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1 Introduction

The ZND theory comprises the basis for most of our analytical understanding of detonations, describing
them as supersonic combustion waves sustained by chemical reactions that the wave itself triggers.
The applicability of the ZND theory, however, depends on a number of assumptions, such as one-
dimensionality, steadiness of the traveling wave, and absence of dissipative effects. Several prior works
have been devoted to obtaining a simplified asymptotic theory of inviscid detonations which attempt to
capture their unsteady multidimensional nature (e.g. [1, 3, 6, 7]). These works represent a step beyond
the ZND theory and allow for a deeper theoretical understanding of inviscid detonations. Much less
attention has been paid at rationally incorporating dissipative processes in the ZND theory.

While detonations tend to be very fast, and often dissipative effects can be safely ignored, there are
circumstances in which this is not the case. For detonations propagating in porous media, for instance,
it has been observed that the speed of propagation can be as low as half the Chapman-Jouguet value.
In detonations propagating in narrow tubes, the effect of heat/momentum losses to the walls cannot be
negligible. In such cases, the theory of ideal detonations, based on the reactive Euler equations as a
modeling basis, must be modified to better reflect physical reality.

In this work, we propose a multidimensional weakly nonlinear asymptotic theory of dissipative detona-
tions, wherein a rational and systematic reduction is performed starting from the reactive compressible
Navier-Stokes equations. In order to retain all dissipative effects (i.e. heat dissipation, species diffusion,
and viscosity), we scale the Reynolds, Prandtl, and Lewis numbers in a way that allows to balance vari-
ous nonlinearities present in the governing equations. The main ideas of weakly nonlinear detonations,
where a high activation energy and weak heat release limit are considered, are similar to those presented
in [6]. The further assumption of the Newtonian limit, used in [2] for an inviscid one-dimensional case,
is also employed in the current work. The final result is a set of three partial differential equations which
describe, in the distinguished limit considered, dissipative detonations.

2 Asymptotic model

We consider, as a starting point, the reactive compressible Navier-Stokes equations. Several modeling
approximations regarding the diffusive process are employed. In particular, Fick’s law is used for the

Correspondence to: aslan.kasimov@kaust.edu.sa 1



Faria, L. M. Dissipative detonations

diffusion of species, and Fourier law is used for the heat dissipation. This, as well as assumptions on the
equation of state (ideal polytropic gas) and chemical kinetics (single step irreversible Arrhenius law),
significantly reduces the complexity of the governing equations. The governing equations are then given
by

Dρ

Dt
+ ρ∇ · u = 0, (1)

ρ
Du

Dt
= ∇ ·

(
−
(
p+

2

3
µdiv (u)

)
I + 2µD

)
, (2)

ρ
DT

Dt
− 1

cp

Dp

Dt
=

1

cp

(
Q̃ρW̃ − 2

3
µ (∇ · u)2 + µ (∇u : ∇u) + µ

(
∇u : ∇uT

)
+∇ · (d∇T )

)
,(3)

ρ
DΛ

Dt
= ρW̃ +∇ · (ρd∇Λ). (4)

with W̃ = k̃(1− Λ) exp(−Ẽ/RT ) and cp = γR/ (γ − 1). Here D/Dt = ∂/∂t+ u · ∇ is the material
derivative and the other symbols have their standard meaning (i.e. u is the velocity vector, p is the
pressure, Ẽ is the activation energy, etc. ).

Here, we focus on the two-dimensional case. Consider a localized wave moving into an equilib-
rium, quiescent state and let ρa, pa, Ta and ua =

√
pa/ρa denote, respectively, the density, pres-

sure, temperature and Newtonian sound speed in the fresh mixture ahead of the wave. We rescale
the dependent variables with respect to this reference state. The independent variables are rescaled as
follows:x = (X −D0t) /x0, y = Y/y0, τ = t/t0, where X and Y are the original spatial vari-
ables andD0 is a typical wave speed, which is to be determined in the process of deriving the asymptotic
model by requiring non-triviality of the leading-order corrections to asymptotic expansions of state vari-
ables. The length scales, x0, y0, and the time scale, t0, are chosen to reflect the appropriate physics of
weakly non-linear waves. We assume that ε = x0/ (uat0) is small, which means that the spatial scale
of interest in the x-direction, which is related to the size of the reaction zone, is small compared to the
typical distance covered by acoustic waves in time t0. For the transverse dimension, we assume the
scaling y0 = x0/

√
ε . This follows from the fact that along a weakly curved front, a distance ε in the

normal direction corresponds to a distance O(
√
ε) in the transverse direction.

Several dimensionless groups appear upon rescaling of the governing equations. We define the Reynolds,
Prandtl, and Lewis numbers, respectively, as follows: Re = ρauax0/µ, Pr = cpµ/κ, Le =

κ/ρacpd. Writing u = (U, V )T , it is convenient to introduce the differential operator L = ∂τ + 1
ε (U −

D0)∂x + 1√
ε
V ∂y. Introducing the dimensionless parameters, Q = Q̃/RTa, E = Ẽ/RTa, K =

t0k̃ exp (−E), the non-dimensional governing equations become
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where W is defined as

W = K(1− Λ) exp

[
E

(
1− 1

T

)]
. (10)

Now we make the following assumptions regarding the size of different dimensionless terms: (a) K =
k/ε, k = O(1); (b) (γ − 1)Q/γ = ε2q, q = O (1); (c) E = θ/ε2, θ = O (1); (d) γ − 1 = ε; (e)
Re = O(1/ε); (f) Pr = O(1/ε); (g) Le = O(1).

Next, we expand the dependent variables as ρ = 1+ρ1ε+ρ2ε
3/2+ρ3ε

2+o(ε2) and similarly with other
variables. Inserting the expansions in (5-8), collecting respective powers of ε, and applying solvability
conditions at each level of the expansion, we obtain that the perturbations satisfy the following system
of equations,
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2
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κT3xx + T3x = ux + qλx + qdλxx, (14)

where

µ =
4

3

1

εRe
, d =

1

ε2RePrLe
, κ =

1

ε2RePr

represent the dissipative effects due to viscosity, species diffusion, and heat conduction, respectively.
The variables u and v are corrections to the flow velocity and λ is the leading order term in the expansion
of the reaction-progress variable, Λ = λ+ o (ε).

Integrating equation (14) twice with respect to x, and assuming all variables and their derivatives vanish
in the limit x→∞, we obtain that the temperature is given by
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1

κ
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Without any further assumptions, we arrive at the following system which describes weakly nonlinear
dissipative detonations:

uτ + uux + vy =
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2
+ µuxx, (15)
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This systems retains viscous effects, species diffusion, and heat conduction.

3 Inviscid case and small κ limit

Although much simpler than the compressible reactive Navier-Stokes equations, the asymptotic system
above still poses a formidable challenge from a theoretical and numerical points of view. An obvious
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simplification occurs when dissipative effects are completely ignored. Then, the asymptotic equations
reduce to

uτ + uux + vy =
−T3x

2
, (19)

vx = uy, (20)

λx = −k(1− λ) exp (θT3) , (21)

T3 = u+ qλ. (22)

This system has been analyzed extensively in [3], where it is shown that (19-22), capture many features
of multidimensional inviscid detonations such as a complex linear stability spectrum, cellular structures,
and triple points.

Somewhat between a fully dissipative and fully non-dissipative descriptions lies the limit of small, but
not negligible heat dissipation. If we assume that κ is small, then Watson’s lemma can be applied to the
integral expression for T3, yielding

T3 = u+ qλ+ qdλx − κ (ux + qλx + qdλxx) + o (κ) . (23)

The governing equations are then given by (15-17), where T is given by equation (23).

Interestingly, the effect of dissipation on the heat distribution in the small κ limit is modeled by including
spatial derivatives which modify the inviscid relation, T3 = u + qλ. As expected, these effects would
only be important in places of high gradients.

The effects of viscosity, µ, and species diffusion, d, have been studied in the past, in the context of the
Majda or Rosales-Majda model ( [4–6]). But since these theories lump pressure, velocity, and tempera-
ture together, heat diffusion is included in the viscous parameter, µ. The theory developed in this paper,
on the other hand, allows for temperature to behave differently than other primitive variables, which is
key for a correct description of reactive shocks. Because of this fact, the effect of heat dissipation is no
longer lumped into µ, but has a special place in the theory.

The one-dimensional traveling wave solutions with d = 0 and in the limit of small κ are described by
the following model,

uτ + uux =
−T3x

2
+ µuxx, (24)

λx = −k(1− λ) exp (θT3) , (25)

T3 = u+ qλ− κ (ux + qλx) . (26)

We see that if also κ = 0, then the theory of viscous detonations developed in [3, 5, 6] applies directly.
For κ 6= 0, however, understanding the nature of traveling wave solutions of (24-26) is at present a
completely open question.

4 Conclusions

In this work, we propose an asymptotic model for detonations wherein dissipative effects, such viscos-
ity, species diffusion, and heat conduction, are important. Retaining higher order derivative terms in
the modeling equations (i.e. compressible reactive Navier-Stokes equations), the resulting asymptotic
system is found to be quite different in its mathematical structure from that of the standard weakly non-
linear theories. Because these asymptotic equations are still too complex, a further approximation is
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performed in order to obtain a more tractable model. The presence of dissipation is expected to bring
new and interesting effects which require further exploration. Even the theory for the traveling wave
solutions of (24-26) appears to be nontrivial. Analysis of these solutions, their linear stability analysis,
and numerical exploration of the reduced system is of interest and is being currently pursued.
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