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1 Introduction 
The mechanism of deflagration-to-detonation transition (DDT) for combustible gas is very intricate, 
which complicates direct numerical simulation. The stiff reactive terms comprising in the reactive 
Navier-Stokes equations require very small time step size so as to ensure the stability of explicit 
scheme. Although implicit scheme can be employed to overcome such limitation, solving large non-
linear equations increases the computational cost dramatically. Implicit integration factor (IIF) 
methods, performing the time evolution via evaluation of an exponential function of the corresponding 
matrix, are classical and efficient time discretization approaches for solving time-dependent partial 
differential equations (PDEs). The IIF methods not only eliminate the stability constrain, but also 
substantially reduce time direction numerical errors from the high order derivatives[1-4]. Zhang et al. 
[5] developed a class of efficient implicit integration factor (IIF) methods for solving systems with 
stiff terms. The size of the nonlinear system arising from the implicit treatment is merely dependent on 
the number of the original PDEs. In theory, the improved methods can achieve arbitrary order 
accuracy and large stability region thanks to the implicit nature of the schemes. For multi-dimensional 
problems, compact implicit integration factor (cIIF) based on rectangular mesh[6] and Krylov implicit 
integration factor (KIIF) based on unstructured mesh[7] was presented. Liu[8] proposed a generalized 
cIIF method with adaptive mesh refinement (AMR) satisfying the excellent stability condition for 
curvilinear coordinates such as polar and spherical coordinates, which has similar computational 
efficiency and stability properties to the cIIF in Cartesian coordinate. Zhang[9] further analyzed the 
numerical stability and truncation errors of the KIIF method to validate and demonstrate the broad 
prospect for solving nonlinear PDEs. 
In the paper, the KIIF method is extended to investigate the DDT mechanism using the reactive 
Navier-Stokes equations with source terms. Time discretization is performed by the KIIF method. The 
stiff reactive terms utilize implicit scheme, and the non-stiff advection-diffusion terms use explicit 
scheme. Large time-step size is needed, which drastically reduces the number of computational steps 
required in the simulation. On the other hand, mapping the large sparse matrix to the Krylov subspace 
greatly decreases the dimensions of equations and thus saves the computational cost. 
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2 Governing equations  
The governing equations used for investigating DDT are the two-dimensional Navier-Stokes equations 
with source terms as follows 
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where,  , T , p , e , Q , Y , u  and v are density, temperature, pressure, internal energy, the heat of 
reaction, the reactant mass fraction, and two Cartesian components of the velocity vector, respectively.  

3 Numerical method 
An explicit-implicit scheme is presented to solve stiff problems, and the strategy mapping the large 
sparse matrix to the Krylov subspace is used to solve large equations. In spatial discretization, the 
weighted essentially non-oscillatory scheme is needed to discretize the advection terms. The second or 
fourth order central finite difference scheme is used to discretize the diffusion terms. Krylov implicit 
integration factor method is used for time discretization. 
3.1 Spatial discretization 

1. In this section, we use the third order finite difference WENO scheme to discretize the nonlinear 

advection terms. We at first perform Lax-Friedrichs flux splitting  
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2. The diffusion terms are discretized by central finite difference scheme. For example, a second order 
approximation to a nonlinear diffusion term 2Dif  has the form 
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Similar procedures are applied to other terms.  
Thus we obtain the semi-discretized ODE system from (1)  
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is the nonlinear reaction term, 1N  and 2, N are the total number of grid points in direction x and y, 
respectively. 
3.2 Time discretization 
We construct Krylov IIF method for (2). Multiply the equation (2) by the integration factor Cte , 
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Integrating by parts and change of variable, we obtain 
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The interpolation points are represented by n i n it t    , 1,0, 1, ,1i r   . The first r points 

 : 1,0, 1, 2, , 2n it i r      are used for an implicit approximation of the nonlinear reaction term: 
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And other terms are approximated explicitly: 
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Then we attain the r-th order IIF scheme 
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3.3 Krylov IIF schemes 
It is difficult to calculate n nC te   because of the large sparse matrix C. We project it to the Krylov 
subspace 
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The dimension M of the Krylov subspace is much smaller than the dimension N of the large sparse 
matrix C. So we take M =25 for different N, and the accuracy is satisfied in our simulation[9]. First, we 
generate the Krylov subspace by the Arnoldi algorithm as follows. 

1. Compute the initial unite vector: 1

2
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2. Perform iterations: j =1,2, ..., M, compute the vector jw Cv  

   Do i=1,2,..., j 
   (1) Compute the inner product ( , )ij ih w v . 

   (2) Compute the vector ij iw w h v   

   (3) Compute 1, 2j jh w   

   (4) If 1, 0j jh   , then  

             stop the iteration. 
         else 
             compute the next basis vector 1 1,j j jv w h  . 
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Then we obtain an upper Hessenberg matrix 
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Since MV  is orthonormal, the vector T C t
M MV V e v  is the orthogonal projection of C te v  on MK , that is to 

say, it is the closest approximation to C te v  from MK . Therefore, 
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where 
2

v  , 1e  denotes the first column of M . Thus the large C te v  matrix exponential problem is 

replaced by a much smaller MH te   problem. The smaller matrix exponential MH te   is computed using a 
scaling and squaring algorithm[10], involving less computational cost 2( )O M . 

4 Numerical simulation 
The width of the tube full of premixed mixture is 20Lf. The left side is closed and the other side open. 
Both the upper and bottom walls are non-slip. A planar flame resulting from a weak ignition is located 
on the left. In the unreacted mixture, initial velocity, temperature and pressure are 0.0m/s, 300K and 
1atm, respectively. Figure 1 shows the temperature evolutions in the reactive process. It illustrates that 
flame initially accelerates due to the expansion of hot products. The flow velocity constantly changes 
along the transverse direction, and increases gradually from the wall to the center. The perturbations 
behind the flame front propagate into upstream, thus change the initial value in unreacted mixture. 
Flame stretch expands the flame surface, hence more chemical energy is released. As flame propagates, 
the gas flow ahead of the flame front accelerates constantly. 

5 Conclusion 
In the paper, Krylov implicit integration factor is used in the numerical simulation of flame 
acceleration and deflagration to detonation transition. The numerical results further demonstrate and 
validate the correction and effectiveness of the novel theoretical analysis used in the reactive Navier-
Stokes equations. Because the stiff reactive terms are discretized by implicit scheme, large time step 
can be utilized to dramatically save computational cost. The method presented in the paper is designed 
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to offer a novel strategy to numerically investigate the intrinsic mechanism of flame acceleration and 
deflagration to detonation transition using direct numerical simulation with low computation cost. One 
can directly extend the method to the three-dimensional reactive Navier-Stokes equations with detailed 
chemical reaction model, which certainly make the advantage of the method more obvious. 

 

 

 

 

 

 
Figure 1 Numerical simulation of flame acceleration 
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