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1 Introduction

The seminal theory of thermal explosions developed by Frank-Kamenetskii [1] examined the onset of

thermal ignition of reactive mixtures enclosed in vessels with isothermal walls by investigating the exis-

tence of steady weakly reactive solutions. The corresponding critical conditions for ignition were seen

to be determined by the competition between the heat released by the chemical reactions, which acceler-

ates the temperature-sensitive reaction rate, and the heat losses to the container wall. Frank-Kamenetskii

addressed initially stagnant systems in which heat transfer occurred solely by thermal conduction. Us-

ing a one-step Arrhenius model with large activation energy for the chemical reaction, he was able to

characterize the state of the system in terms of a single parameter, a Damköhler number D, defined as

the ratio of the characteristic heat-conduction time across the container to the characteristic chemical

time needed to increase the temperature by an amount of the order of the so-called Frank-Kamenetskii

temperature. For a given geometry, the solution was represented in a diagram showing the maximum

temperature increase in the container as a function of D. Regardless of the geometry considered, the

lower branch of the resulting curve, departing from the origin of the diagram, was found to exhibit a

first turning point at a critical value Dc of order unity, beyond which the steady weakly reactive solu-

tion ceases to exist. Using the value of Dc together with the definition of the Damköhler number leads

to explicit expressions for critical explosion sizes, giving results in close agreement with experimental

observations, a truly notable achievement of the early theory given the many different simplifying as-

sumptions involved in its derivation [2]. This remarkable success has motivated recent extensions of the

early theory incorporating realistic chemistry in descriptions of hydrogen-oxygen systems that have been

shown to predict explosion conditions in spherical vessels in excellent agreement with experiments [3],

including critical pressures along the so-called third-explosion limit [4].
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It was soon acknowledged in the initial investigations reported by Frank-Kamenetskii [2] that in gaseous

reactive systems under normal gravity conditions the density differences associated with the tempera-

ture increase induced by the chemical reaction, although small in thermal-explosion events, may suffice

to generate significant convection, thereby questioning the assumption of stagnant fluid present in the

original development. The influence of the resulting motion can be measured through a Grashof num-

ber Gr based on the characteristic induced velocity associated with the Frank-Kamenetskii temperature

increase. For a given Gr, the diagram of peak temperature as a function of D can be compared with

the motionless case to assess the effect of buoyancy on the onset of the thermal explosion. The dif-

ferent curves generated in computations for increasing values of Gr [5–7] were found to be almost

indistinguishable from the convection-free results for values of Gr as large as a few hundred, with cor-

responding values of Dc differing by only a few percent from those of the buoyancy-free predictions [2],

an unexpected outcome that has remained largely unexplained.

Many of the previous theoretical and numerical analyses of thermal explosions have considered simpli-

fied geometries, including the infinite slab, the infinite cylinder and the sphere. A number of theoretical

analyses have addressed effects of buoyancy on explosions in horizontal infinite slabs [8–11], for which

a motionless solution may exist when buoyancy is sufficiently weak. The present work deals instead

with reactive gases in spherical vessels, for which a motionless state is never a solution to the conser-

vation equations in the presence of gravity. The effect of convection on the temperature field and the

corresponding modifications to the value of Dc are negligibly small for values of Gr ≪ 1, in which

limit the spherically symmetric Frank-Kamenetskii temperature distribution is recovered at leading or-

der. The accompanying Stokes motion, arising from a balance between the buoyancy force and the

viscous stresses, conforms an annular vortex that is symmetric about the equatorial plane, which is de-

scribed here, including the simplified analytic solutions arising along the lower branch of the reactive

curve near the origin (i.e., for D ≪ 1). The work is extended to investigate also higher-order perturba-

tions to the Frank-Kamenetskii solution for Gr ≪ 1 as well as the opposite limit of strong buoyancy

Gr ≫ 1.

2 Problem formulation

Following the classical analyses [2], the thermal explosion in a spherical container with an isothermal

wall is formulated in terms of a one-step irreversible reaction, including an Arrhenius rate with an

activation temperature Ta that is much greater than the wall temperature To, so that their ratio β =
Ta/To can be used as an asymptotically large quantity in describing the solution. Since the reaction-

rate increase is associated with a small temperature increment of the order of the Frank-Kamenetskii

temperature (T − To) ∼ β−1To ≪ To, the associated density decrement with respect to the chemically

frozen value (ρo − ρ)/ρo is of order β−1 ≪ 1, as inferred by the equation of state, with the result that

the Boussinesq approximation can be used to investigate the resulting motion. The characteristic flow

velocity vc = β−1ga2/ν follows from a balance between viscous forces and buoyancy forces, with g and

ν representing the gravitational acceleration and the unperturbed value of the kinematic viscosity, and

a denoting the radius of the spherical vessel. Using vc and a to scale the velocity and radial coordinate

and introducing the dimensionless temperature increment Θ = β(T − To)/To reduces the momentum

and energy equations for the weakly reactive solutions to

Gr v · ∇v = ∇2
v−∇p+Θez (1)

Gr Pr v · ∇Θ = ∇2Θ+D eΘ, (2)

where ez is the unit vector pointing upwards (against gravity) and p represents the pressure differences

from the hydrostatic value scaled with ρoga/β. Here, Pr = ν/DT , taken to be unity in the computa-

tions below, denotes the Prandtl number of the gas, with DT correspondingly representing its thermal
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diffusivity. The Damköhler and Grashof numbers, given respectively by

D =
β[q/(cpTo)]BYoe

Ta/To

DT /a2
and Gr =

ga3

βν2
, (3)

appear as the main controlling parameters in the formulation. Here, q, cp, Yo, and B are the amount

of heat released per unit mass of reactant consumed, the specific heat at constant pressure, the initial

reactant mass fraction, and the reaction-rate frequency factor. The solution is obtained by integrating (1)

and (2) supplemented with the continuity equation ∇ · v = 0 with boundary conditions v = Θ = 0 at

the container walls. For given values of Pr and Gr, at least one solution exists for values of D below a

critical value Dc and no solution exists for D > Dc.
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Figure 1: Summary of the Frank-Kamenetskii solution, including as dashed lines the asymptotic results

for D ≪ 1 obtained by evaluating the first three terms in the expansions for ΘFK and FFK.

3 The Frank-Kamenetskii solution

The original analysis of Frank-Kamenetskii, neglecting the effect buoyancy, is recovered in the present

formulation by setting Gr = 0 in (2) to give

Θ′′

FK
+

2

r
Θ′

FK
= −D eΘFK

{

ΘFK(0) 6= ∞

ΘFK(1) = 0
(4)

for the spherically symmetric Frank-Kamenetskii temperature field ΘFK(r), where the prime denotes

differentiation with respect to r. The resulting temperature profile peaks at the center, with a value

that depends on D, as shown in Fig. 1, which also displays five different temperature profiles ΘFK(r)
corresponding to the conditions indicated by the dots along the criticality curve ΘFK(0) − D. For the

spherical geometry considered here the curve exhibits multiple turning points, the first one emerging for

D ≃ 3.322 when ΘFK(0) ≃ 1.61. Since the remaining turning points occur always for D < 3.322,

for practical purposes only the first turning point becomes relevant in defining the critical explosion

conditions, which are therefore given by Dc = 3.322.

The spherically symmetrical temperature field obtained by Frank-Kamenetskii for Gr = 0 generates a

convective flow in the form of an annular vortex, symmetric about the equatorial plane, with a velocity
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v = (vr, vθ) that can be determined by integrating (1) with Gr = 0. This velocity field can be expressed

as vr = 2cos θFFK/r
2 and vθ = − sin θF ′

FK
/r in terms of the Frank-Kamenetskii stream function

ψFK = FFK(r) sin
2 θ, where FFK is determined by integration of

F ′′′′

FK
− 4F ′′

FK
/r2 + 8F ′

FK
/r3 − 8FFK/r

4 = −rΘ′

FK

{

FFK(0)/r
2 6= ∞

FFK(1) = F ′

FK
(1) = 0

. (5)

The solution depends on D through the function Θ′

FK
, giving the results shown in Fig. 1. The stream

function FFK is seen to be very small, revealing that, as a result of the spherical confinement, the induced

viscous flow is very slow. To illustrate further this effect, the figure includes the variation with D of

the velocity at the center of the container, given by the value of (2FFK/r
2) at r = 0. Besides, to

complete the description of the Frank-Kamenetskii solution the temperature isolines and the streamlines

corresponding to D = 2 are plotted in Fig. 2.

Figure 2: Temperature isolines (left hemispheres) and stream lines (right hemispheres) determined nu-

merically for D = 2 and Gr = 0 (left-hand-side sphere) and for D = 21 for Gr = 106 (right-hand-

side sphere); the dotted lines on the left-hand-side plot are obtained from evaluations of the three-term

asymptotic expansions for D ≪ 1.

For small values of the Damköhler number the solution can be determined by introducing regular expan-

sions of the form ΘFK = D(ΘFK0
+DΘFK1

+D2ΘFK2
+ · · · ) and FFK = D(FFK0

+DFFK1
+D2FFK2

+
· · · ). Using a Taylor expansion for the exponential in (4) provides a series of linear equations for the

functions ΘFKi
that can be solved sequentially subject to the conditions ΘFKi

(0) 6= ∞ and ΘFKi
(1) = 0.

A similar sequential procedure applies to the solution for the stream function, with the linear problems

arising at different orders obtained from (5) after evaluation of the buoyancy force on the right-hand side

with use made of the expansion for ΘFK. Up to three terms were computed analytically following this

procedure. The corresponding asymptotic predictions are compared in Figs. 1 and 2 with the numerical

results. The asymptotic expansions can be seen to remain accurate even for values of D of order unity.

4 Summary of results for Gr > 0

Deviations from the Frank-Kamenetskii solutions emerge for any nonzero value of Gr. Although the

extent of the modifications to the heat-transfer rate can be expected from (2) to be of order Gr, the

observed departures are much smaller because the buoyancy-induced flow is very slow. An exact quan-

tification involves the numerical integration of (1) and (2). Results corresponding to different values of

Gr, similar to those of previous numerical studies [5–7], were obtained with a finite-difference com-

putation. Because of the pseudo-transient method employed here in seeking convergence to a steady
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solution, the branch of unstable solutions found beyond the first turning point is not accessible in the

numerical integrations, so that the results shown in figure 3 are limited to the lower branch of solutions

extending from D = 0 to D = Dc. A notable feature of the results is that, as anticipated above, the

deviations with respect to the Frank-Kamenetskii curve are very small up to relatively large values of

Gr.
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Figure 3: Results of integrations of (1) and (2).

The small deviations from the Frank-Kamenetskii solution resulting from the presence of fluid motion

can be formally addressed by considering the asymptotic limit Gr ≪ 1. In order to quantify the shift of

the curve near the turning point, including the modifications to the predicted value of Dc, it is necessary

to proceed by selecting the solution corresponding to a given point along the Frank-Kamenetskii curve

ΘFK(0)−DFK and posing the problem as that of finding the Damköhler number D that, for a given value

of Gr ≪ 1, results in a temperature at the center of the container Θ(r = 0) equal to ΘFK(0). Hence,

besides expansions for the temperature and stream function of the form Θ−ΘFK = GrΘ1 +Gr2Θ2 +
O(Gr3) and ψ−ψFK = Grψ1+Gr

2ψ2+O(Gr3) the analysis requires consideration of an expansion for

the Damköhler number variation from its Frank-Kamenetskii value D−DFK = Grδ1+Gr
2δ2+O(Gr3).

The terms in the above expansions are determined by solving sequentially the different problems that

arise at different orders in powers of Gr. The solution reveals, in particular, that δ1 is identically zero,

so that the shift D−DFK is only of order Gr2. The corresponding factor δ2, a function of D, turns out to

be a very small number that increases for increasing values of ΘFK(0), reaching a value δ2 = 2.2×10−6

at the turning point of the original Frank-Kamenetskii curve. This small value is in agreement with the

numerical results shown in Fig. 2.

The opposite limit Gr ≫ 1 is also worth investigating. The numerical integrations shown on the right-

hand side of Fig. 2, corresponding to Gr = 106 and D = 21, reveal that the flow structure for Gr ≫ 1
includes a central region of slowly moving hot gas, bounded by a high-velocity near-wall boundary layer

driven by buoyancy. The scales and dominant balances applying in each region can be anticipated by
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an order-of-magnitude balance. Thus, since the temperature increment must be Θ ∼ 1 for the thermal

explosion to develop, in the boundary layer the buoyancy force in (1) is of order unity, inducing stream-

wise velocities vθ of order Gr−1/2 in a near-wall layer of characteristic thickness Gr−1/4, as inferred

from the convection-diffusion balance in (1). The flow in the central region, outside the boundary layer,

is induced by the boundary-layer entrainment, with characteristic velocities of order Gr−3/4. This slow

motion does not induce an appreciable pressure disturbance inside the container, where (1) reduces to

−∇p + Θ̄ez = 0, with Θ̄ denoting the temperature in the container outside the boundary layer. This

result indicates that the pressure p and the temperature Θ̄ are only a function of z (the latter dependence

is clearly seen in the stratified temperature field of Fig. 2). Convection dominates the heat transfer in

this central region, as follows from (2). This equation also indicates that the characteristic Damköhler

number at ignition is of order D ∼ Gr1/4, so that an appropriate convection-reaction balance leading to

the needed temperature increment Θ̄ ∼ 1 can be reached in the container interior, while the boundary

layer remains chemically frozen in this limit, because the transport rates there are larger than the reaction

term by a factor of order Gr1/4, as can be seen from (2).
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