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1 Introduction 
The significance of diffusive transport in combustion has long been recognized. The term representing 
diffusive transport via dissipative fluxes in the detailed Navier-Stokes equations finds its 
correspondence, in various forms, also in reduced, approximate models for combustion. An important 
feature is that simplified models often assume the same local direction for the transport of all scalars. 
This situation could be termed “one-dimensional transport” - the local dissipative fluxes of all scalars 
are aligned with one spatial direction. This direction is, for instance, given by the gradient of mixture 
fraction in the classical non-premixed flamelet model. 
 
The advantage of this simplification is that diffusive processes can be described by one single number, 
which describes the local “strength” (magnitude) of the diffusive flux [1, 2]. However, it is unclear 
how this restriction to one dimension affects the model accuracy. 
 
In this paper, the mutual alignment of the local diffusion fluxes of different state variables in a non-
premixed turbulent combustion scenario is studied using 3D DNS data. It is found that the diffusive 
fluxes (as inferred from spatial gradients) of different species display a considerable directional 
scatter. This scatter is not fully random, but approximately restricted to a two-dimensional subspace of 
the three-dimensional geometrical space. 
 
These observations may be important in the context of computational models for a simplified 
description of reaction-diffusion systems. To assess this importance, the significance of the multi-
dimensional transport for the REDIM-approach [3] is studied. In the REDIM method, one-  two- and 
three dimensional gradient estimates can generically be accounted for [3,4]. REDIMs for identical 
boundary conditions, but with different dimensionality of the gradient estimate are computed and 
compared. The difference, while noticeable, is overall quite small. This indicates that, at least for the 
conditions of the studied flames, the two-dimensional diffusive transport has little influence on the 
overall behavior of the reaction-diffusion system. 
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2 Methodology 
2.1. DNS data 
DNS data were provided by ISUT at Magdeburg University. Details of the employed DNS method are 
given in [5], therefore, only a short account is given here. The DNS feature a non-premixed 
atmospheric pressure scenario where diluted N2/H2 (75%/25% by mole) counter-flows with an air 
stream (79% N2, 21% O2 by mole), all at 298 K. Detailed chemistry [5] is used with a simplified Le = 
1 assumption for the transport. The computation domain had a size of 3.4 x 10 x 6.8 mm3, with a 
spatial resolution of 25 micrometer, and the time step for the numerical solution was 0.1 microseconds. 
The DNS were initialized with species- and temperature profiles from a laminar one-dimensional 
flame simulation, broadcast onto the 3D DNS geometry. A velocity field from artificial turbulence, 
with Rel=500 (based on integral length-scale), u’=2,1 m/s was overlaid. The resulting turbulent flame 
featured local extinction, but was globally burning stably, as is indicated by the temporal evolution of 
the heat release rate. 
 
2.2. Analysis of gradients 
To analyze the strength and relative orientation of different scalars’ gradients, for each time step of the 
DNS data set, 5000 random points were selected from regions where the heat release rate was at least 
a certain fraction of the global maximum heat release. Several fractions were used in different runs of 
the analysis, ranging from 10-6 to 10-1. 
For each scalar ψi (temperature and 9 species, H2, O2, H2O, H2O2, HO2, OH, H, O, N2) at one point, 
the spatial gradients were determined. The resulting gradients were arranged into a 3-by-10 (3-by-nψ in 
general) gradient array G, such that columns of G correspond to variables and rows correspond to 
spatial directions (x,y,z). Normalizing all columns of G to 1 then formed a normalized version Gnorm of 
G. 
We are interested in the mutual (mis-)alignment of the gradient vectors in G, as opposed to the 
“overall” direction of the gradients dictated by the local flame orientation. To determine and remove 
the overall trend, a local coordinate frame that is aligned with the dissipation field is constructed, and 
the analysis then focuses on the components of the gradients in this aligned frame. Several methods 
exist for constructing such a locally aligned coordinate system. The gradients of selected species or 

other state variables may be used as a basis for the coordinate system. For instance, in the classical 
non-premixed flamelet model, the gradient of mixture fraction is used for this purpose. 
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Fig. 1 Left: Some synthetic normalized gradient vectors (simplified example in two dimensions), and the first 
column u and second column v of the matrix Y resulting from the SVD-analysis. Right: A three-dimensional 
example of actual gradients from the DNS data set. Gradient vectors of different species are not well-aligned, 
but scatter approximately within a two-dimensional space. 
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In this paper, we take a different approach, which automatically includes all state variables. For this, 
the matrix Gnorm is decomposed according to the singular value decomposition (SVD, [7]). 

VSY ′⋅⋅=normG  
The column vectors of the 3x3 matrix Y form an orthonormal basis of geometrical space, which is 
optimally aligned with the directions of the local gradient vectors in Gnorm. The two-dimensional 
example in Fig. 1 (left) illustrates this, while the right diagram shows a genuine example for the 
vectors extracted from a DNS. The first column (named u) of Y is optimally aligned with the direction 
of the gradient vectors. The second column (v) optimally describes the direction of the gradient 
vectors after their u-component has been removed, and the third column (w) represents the least 
significant direction. The column vectors in Y = (u v w) therefore establish a “dissipation-aligned” 
orthogonal coordinate system, which additionally offers a natural hierarchy of directions. 
By applying the unitary transformation normG⋅′Y , the coordinates of the variables’ gradients in the 
standard (x,y,z)-coordinate frame are transformed into the coordinates in the dissipation-aligned 
(u,v,w) coordinate system. These (u,v,w)-based coordinates will be considered in the following. 
 
 
2.3. Modified REDIM 
 
The original system of equations governing the reacting flow can be cast in the vector form in 
coordinate free formulation as the following [1,2] 

∂ψ
∂t

= F ψ( )− !vgradψ + 1
ρ
div D ψ( )gradψ( )       (1) 

This system describes the evolution of the thermo-chemical state vector ( )nψψψ ,...,1=  in time and in 
physical space, where

iZ

 the jψ  represent such quantities as the pressure of the mixture p , the enthalpy 

h  and chemical species’ specific mole numbers wi /Mi, i =1,...,ns  (mass fractions divided by molar 
masses). F  represents the chemical source term, v!  is velocity vector, ρ  is the density and D  is the 
general diffusion matrix. A reduced model can be created assuming approximate relations between the 
variables of the system (1) such that they define a low-dimensional surface (manifold) in the state 
space spanned by the ψj. This manifold then can be defined as 

( ) ( ){ } nmM m <<=== ,,...,, 1 θθθθψψ .       (2) 
The REDIM methods is based on the solution of the REDIM equation following from the invariance 
relations (see e.g. [8]) as 

∂ψ θ,τ( )
∂τ

= I −ψθψθ
+( ) ⋅ F ψ θ( )( )+ 1

ρ
div D ψ θ( )( )ψθ θ( )gradθ( )⎡

⎣
⎢

⎤

⎦
⎥

ψ θ, 0( ) =ψ 0 θ( )

⎧

⎨
⎪

⎩
⎪

    (3) 

In this approach the molecular transport term describing the fluxes ( )( )ψψ graddiv D  explicitly 
depends on the spatial gradient on the manifold 

gradψ θ( ) =ψθ θ( )gradθ         (4) 
Hence, information on the gradients and their dependence on the reduced variable θ  must be specified 
before the stationary solution of Eq. (3), which represents the manifold Eq. (2) used to reduce the 
system, can be calculated. Note that the reduced system’s state space Eq. (2) is defined by only two 
processes (reaction and diffusion, see e.g. [4] and Eq. (3)), while the advection influences the manifold 
by the gradients. Eq. (4) that has to be incorporated consistently with the problem’s boundary- and 
initial conditions. In order to show transparently how the multi-dimensional transport can be 
accounted for, the transport term 

T ψ( ) = div D ψ( ) grad ψ( )( ), D ψ( ) = d ⋅ I⇒ T ψ( ) = d div grad ψ( )( )    (5) 
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is simplified by assuming a constant diagonal diffusion matrix and considered in Cartesian coordinate 
system. Thus the simple Laplace diffusion term in 3D can be cast: 

grad ψ( ) =
gradx ψ( ) grady ψ( ) gradz ψ( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⇒ T ψ( ) = d

ψ1,xx +ψ1,yy +ψ1,zz
ψ 2,xx +ψ 2,yy +ψ 2,zz

...
ψ n,xx +ψ n,yy +ψ n,zz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (6) 

By using the gradient estimate as described above and the definition of the Laplace operator, the 
transport term (transversal to the tangential space of the manifold) Eq. (6) on the manifold can be 
further simplified to: 

T ψ θ( )( ) = dψθθ θ( )!grad θ( )!grad θ( ) =
= d gradx θ( )T ⋅ψθθ θ( ) ⋅gradx θ( )+ grady θ( )T ⋅ψθθ θ( ) ⋅grady θ( )+ gradz θ( )T ⋅ψθθ θ( ) ⋅gradz θ( )( )  

 
Hence, the gradients of the parameter on the manifold are only needed to employ the REDIM equation 
(solution of Eq. (3)). These can be found as results of the DNS data analysis. Namely, in the 
orthogonal local coordinate system (u,v,w) the gradients grad(u,v,w) ψ( )  are estimated (see Fig. 3) and 

the information about the parameter grad(u,v,w) θ( )  gradients can be transferred to the local 
coordinates according to Eq. (4), e.g. for the u-direction it reads 
gradu ψ( ) =ψθ gradu θ( )→ gradu θ( ) =ψθ

+ gradu ψ θ( )( ) .      (7) 

3 Results 
 
3.1. Gradient statistics 
 
The directions of gradients corresponding to different variables scatter strongly (cf. Fig 1).  
Figure 2 shows, as a representative data set, the temporal development of the u, v and w components 
of grad(T) in the frame, as obtained from the analysis described in section 2.2. The v- and w-
components are plotted vs. the u-component. Each of the 9 sub-diagrams refers to a time step of the 
DNS simulation, as indicated in the labels. For the initial, laminar flame (time 0), the v- and w- 
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Fig. 2 Temporal development of the u-,v- and w-components of grad(T). Time steps are given in units of 0.1 
microseconds. 
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components are zero, reflecting the fact that the gradient of temperature is perfectly aligned with the 
first principal direction (the u-direction). In fact, for early times, all scalars’ gradients are oriented in 
the same direction, therefore only the u-component is non-zero for all gradients. This corresponds to 
the case of one-dimensional dissipation. With increasing time, the v-component becomes increasingly 
important. After 3600 time units (1 unit corresponds to 0.1 microseconds), the magnitudes of u- and v-
components become comparable, and two spatial directions now essentially dominate the diffusive 
transport. Note that the v-component can be in the same magnitude as the u-component also for large 
values of the gradients; the directional scatter is therefore not a spurious phenomenon that occurs only 
at small, insignificant gradients. The third (w-) component of the gradient, however, remains small at 
all timesteps. The dissipation therefore, here is an essentially two-dimensional phenomenon. 
 
 
3.2. 1D and 2D gradient estimates 
 
As a result of the SVD-analysis, u, v and w components of gradients are available for 5000 DNS data 
points, along with the mass fractions of N2 and H2O and the corresponding values (θ1, θ2). The data 
points (gradqψk, θ1, θ2) (q=u,v , k=N2,H2O)  approximately describe two-dimensional surfaces; 
numerical representations of these surfaces were computed on a rectangular grid in the REDIM 
coordinates (θ1,θ2) by taking a distance-weighted average of gradqψk at each grid point. Figure 3 shows 
the resulting surfaces for the u- and v-components of grad N2 and grad H2O. 
 

 
 
3.3. REDIM with 1D and 2D transport 
 
From the DNS data analysis, we observe that the dissipative processes in the considered example are 
essentially two-dimensional (in the sense of section 3.1). Therefore, the third term in Eq. (7) is 
negligible, while the second term does have some noticeable contribution (see Fig. 3, green mesh). 
Figure 4 shows the resulting REDIMs for three different cases. For the blue mesh, only 1D dissipation 
(along gradu) is accounted for; the green mesh is also for 1D dissipation, but with only gradv 
considered in Eq. (7). The red mesh shows the manifold when both gradu  and gradv  are considered in 
the REDIM evolution equation Eq. (3). Significant differences are apparent when only the second 
direction is accounted for (even for main radicals like H or H2O2, the maximum concentration is 
overestimated by the green mesh, see Fig. 4), while the differences between blue and red are moderate. 
We conclude that the example considered here can satisfactorily be described using only one-
dimensional dissipation, along the first (u-) direction. 

     
 

Fig. 3.  DNS-based gradient estimates (u- and v-components) on the REDIM manifold as a function of (Ν2, 
Η2Ο). Blue – gradU N2 and H2O, green – gradV of N2 and H2O. 
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4 Conclusions 
The mutual alignment of the local diffusion fluxes of different state variables (temperature and 
species) in a non-premixed turbulent combustion scenario is studied using 3D DNS data. In the 
considered flame configuration, the diffusion fluxes of different species display considerable 
directional scatter, while residing approximately within a two-dimensional subspace of three-
dimensional geometrical space. Such a two-dimensional nature of diffusion fluxes is not accounted for 
in most simplified combustion models. The significance of the multi-dimensional transport for model 
reduction was studied using a REDIM-approach, which naturally allows incorporating these effects. 
Different REDIMs for identical boundary conditions, but with different dimensionality of the DNS-
based gradient estimate were computed and compared. The difference, while noticeable, was quite 
small. We conclude that, for the conditions studied in the DNS on hand, the two-dimensional 
dissipative transport is of negligible influence on the overall behavior of the reaction-diffusion system. 
It is possible, however, that for stronger turbulence or when more detailed models for dissipative 
transport are used, the multi-dimensional transport gains importance as an influencing factor. This is 
subject of future work, employing the same methodology as presented in this paper. 

5 Acknowledgments 
The authors thank Abouelmagd Abdelsamie from the group of Prof. Dominique Thevenin (ISUT, 
Universität Magdeburg) for supplying DNS data samples. Financial support by the DFG within the 
German–Israeli Foundation under Grant GIF (No: 1162-148.6/2011) is gratefully acknowledged. 

References 

[1] N. Peters, Proc. Comb. Inst. 21 (1987) 1231–1250. 
[2] J.A. van Oijen, L.P.H de Goey, Combustion Theory and Modelling (CTM) 6 (2002) 463–478. 
[3] V. Bykov and U. Maas, Combustion Theory and Modelling (CTM) 11(6) (2007), 839–862. 
[4] V. Bykov and U. Maas, Proc. Combust. Inst. 34 (1) (2013) 197–203. 
[5] Abdelsamie, A. and Thévenin, D., in Direct and Large-Eddy Simulation IX, (Fröhlich, J., Ed.), Dresden 

(2013), 62-63. 
[6] Maas, U. and J. Warnatz, Combustion and Flame 74 (1988) 53-69. 
[7] G. Golub and C. van Loan 1996. Matrix Computations: Johns Hopkins University Press. 
[8] A.N. Gorban, I.V. Karlin and A.Yu. Zinovyev, Physics Reports 396 (4-6) (2004) 197–403. 

 
 

Fig. 4. REDIMs in projection to some species mole numbers. The red mesh shows the REDIM where the 
transport in both directions u and v was accounted for, blue mesh – only u, green mesh – only v. The black 
curves are stationary solutions for different scalar dissipation rates. 


