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1 Introduction

At sufficiently low Froude numbers, jet diffusion flames are known to undergo a bifurcation to a periodic
flow state referred to as “flame flicker” [1]. The associated frequency varies between the values found
in laboratory-scale experiments, typically in the range of 10 to 20 Hz, to values as small as 0.5 Hz for
large-scale pool fires [2]. The role of buoyancy as the driving mechanism was recognized in the early
theoretical analysis of Buckmaster and Peters [3], who postulated that the flickering was associated with
a modified Kelvin-Helmhotz instability of the annular flow induced by buoyancy in the envelope of hot
gases surrounding the jet flame. By performing an inviscid, parallel flow stability analysis of a simplified
self-similar model problem (the so-called infinite candle) they were able to determine an expression for
the flicker frequency, which was predicted to vary with the one fourth power of the streamwise distance.
This dependence, although weak, was readily recognized as a weakness of the results [4]. As pointed out
by Buckmaster and Peters in their 1986 paper [3], a “detailed viscous stability analysis of the complete
flow field” could help to examine the validity of the results of their simplified study, although they
recognized that the suggested analysis was “a formidable undertaking” at the time. As a result of the
increase in computer power and of the development of robust numerical techniques that have occurred
in the intervening time, such an analysis can be performed nowadays with reasonable computational
cost, that being the purpose of the present work.

While the early theoretical work assumed a convective instability [3], later experimental observations [5]
suggested that the flame flickering phenomenon was associated instead with a globally excited oscilla-
tion forced by a region of absolutely unstable flow near the base of the jet exit. These findings were later
supported by direct numerical simulations [6] and by local linear stability analyses assuming nearly
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Figure 1: (a) Sketch of the problem and computational domain. (b) Base-flow isocontours
of Z̄ (left-hand side) and T̄ (right-hand side) together with radial profiles of v̄x and T̄ at x =
10, 15, 20, 25, 30, 40, 45 for Pr = 0.7, LF = 1, S = 4.62, γ = 6, TA = 1, Re = 100 and Fr = 625; the
thick solid line represents the stoichiometric flame surface Z̄ = Zs, where T̄ = 1 + γ.

parallel flow [7]. The present work is different from these previous attempts, in that it employs, for
the first time, a linear global instability analysis to examine buoyancy-induced flickering of axisymmet-
ric laminar jet diffusion flames. The method determines directly, without invoking weakly nonparallel
assumptions, the critical conditions at the onset of the linear global instability as well as the Strouhal
number of the associated oscillations in terms of the governing parameters of the problem, thereby
circumventing the need for analyzing the local convective/absolute stability character of the flow.

2 Problem statement

The configuration analyzed includes a vertical fuel jet with temperature T ′0 and density ρ′0 discharging
upwards through an injector of inner radius a into an infinite air atmosphere at temperature T ′A, as
indicated in figure 1(a). For generality, the analysis considers dilution of the fuel with an inert gas, with
YF,0 denoting the fuel mass fraction in its feed stream, while YO2,A =0.232 is the oxygen mass fraction
in air. In the description, focused on the fluid mechanic aspects of the flow, we adopt the one-step
irreversible overall reaction F + sO2 → sCO2

CO2 + sH2O
H2O, according to which the unit mass of fuel

reacts with a mass s of oxygen to generate a mass sCO2
of CO2 and a mass sH2O

of H2O, with sCO2
+
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sH2O
= s+ 1, releasing in the process an amount of energy given by q = hoF − sCO2

hoCO2
+ sH2O

hoH2O
,

where hoi denotes the enthalpy of formation per unit mass of species i. The above representation of
the underlying stoichiometry for the oxidation of the fuel embodies the fundamental thermochemical
parameters involved in nonpremixed flames [8], namely, the mass of air that one needs to mix with
the unit mass of the gaseous fuel stream to generate a stoichiometric mixture S = sYF,0/YO2,A

and
the dimensionless temperature increment resulting from the adiabatic combustion of that mixture γ =
(qYF,0)/[cpT

′
A(1+S)], with cp representing the specific heat at constant pressure, assumed to be constant

in the following analysis. Typical values for undiluted hydrocarbon-air flames are S = 15 and γ = 7.

Often in nonpremixed-combustion applications, the characteristic fluid mechanical time, defined in lam-
inar jet flames by the characteristic residence time a/U0, with U0 = ṁ/(πa2ρ′0) being the average jet
velocity based on the fuel mass flow rate ṁ, is much larger than the characteristic time of fuel oxidation
in the high-temperature flame region. Under those conditions, the chemical reaction occurs at a fast rate
in a very thin layer, outside of which the chemical equilibrium condition

ŶFŶO2
= 0 (1)

applies in the first approximation, ŶF = YF/YF,0 and ŶO2
= YO2

/YO2,A
representing here the fuel and

oxygen mass fractions normalized with their values in their respective feed streams. The resulting flow
can be described by considering the limit of infinitely fast combustion, in which the reaction-rate terms
in the conservation equations for energy and species appear as Dirac delta distributions located at the
flame, which becomes in this limit an infinitesimally thin surface separating a near-axis region without
oxygen from a fuel-free outer atmosphere [9]. In the computations below, we use the coupling-function
formulation presented in [8], originally developed by Liñán [10], who generalized the Burke-Schumann
description of diffusion-controlled combustion to the realistic cases in which the Lewis of the fuel LF is
nonunity. The description involves the two mixture-fraction variables

Z =
SŶF − ŶO + 1

S + 1
and Z̃ =

SŶF/LF − ŶO + 1

S/LF + 1
, (2)

together with the excess-enthalpy variable

H =
T − TA

TA

+
γ(S + 1)

S
(ŶO − 1), (3)

where the nondimensional temperature T has been scaled with T ′0, with TA = T ′A/T
′
0 correspondingly

being its value in the surrounding air atmosphere. The standard mixture fraction Z and the diffusion-
weighted mixture fraction Z̃ are defined to be zero in the air stream and unity in the fuel stream, re-
spectively, while H = 0 in the air stream and H = H0 = (1 − TA)/TA − γ(S + 1)/S in the fuel
stream. At the flame, where both reactants appear in zero concentrations, the mixture fractions take the
stoichiometric values Z = ZS = 1/(S + 1) and Z̃ = Z̃S = 1/(S/LF + 1).

The low-Mach number approximation is used in the description. Using the jet radius a and the residence
time a/U0 as scales in nondimensionalizing the problem, reduces the conservation equations to

∂ρ

∂t
+∇ · (ρv) = 0, (4)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+

1

Re
∇ · ¯̄τ +

1

Fr
(T−1A − ρ)ex, (5)

ρ
∂Z

∂t
+ ρv · ∇Z =

1

Re Pr
∇ ·

[(
S/LF + 1

S + 1

)
ρDT∇Z̃

]
, (6)

ρ
∂H

∂t
+ ρv · ∇H =

1

Re Pr
∇ · (ρDT∇H) , (7)
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where p represents the pressure difference from the unperturbed ambient distribution, appropriately
non-dimensionalized with its characteristic value ρ′0U

2
0 , v = (vx, vr) is the nondimensional velocity

field scaled with U0, and ¯̄τ = µ (∇v +∇vT) +
(
m0µB − 2

3µ)(∇ · v
) ¯̄I is the viscous stress tensor,

with ¯̄I representing the identity tensor. The power-law expressions µ = ρDT = µB = T 0.7 are
employed for the the temperature dependence of the transport coefficients, where ρ, DT, µ, and µB
are the nondimensional density, thermal diffusivity, shear viscosity, and bulk viscosity scaled with their
values in the fuel jet ρ′0, D′T,0, µ′0, and µ′B,0, with m0 = µ′B,0/µ

′
0 correspondingly representing the ratio

of bulk viscosity to shear viscosity in that stream. The Prandtl number Pr (the ratio of the kinematic
viscosity to the thermal diffusivity) is assumed to be constant in the description. Equations (4)–(7)
must be supplemented with the equation of state ρT = 1, which is written for simplicity neglecting the
variations of mean molecular weight in the gas mixture, and with the expressions

ŶO = 0, YF =
Z − ZS

1− ZS
=
Z̃ − Z̃S

1− Z̃S

, and
T − TA

TA

= H +
γ

1− ZS
, for Z ≥ ZS , (8a)

YF = 0, ŶO = 1− Z

ZS
= 1− Z̃

Z̃S

, and
T − TA

TA

= H +
γ

1− ZS

Z

ZS
for Z ≤ ZS , (8b)

obtained from the definitions (2) and (3) with use made of the equilibrium condition (1).

The boundary conditions for the integration of (4)–(7) include a symmetry condition along the axis. The
values of the coupling functions are specified at the nozzle inlet and in both the air region and the lateral
boundary. As for the velocity, a Poiseuille distribution, v = 2 (1 − r2)ex, is assumed upstream from
the injector exit, while a condition of vanishing stress is used on the lateral boundary r = rmax and also
downstream at x = xmax. No forced air coflow is considered in the integrations below, so that the air
enters the domain as needed to satisfy the jet-entrainment requirements.

Besides the transport numbers Pr and LF, the thermochemical parameters S and γ (the former ap-
pearing through the stoichiometric values ZS and Z̃S in (8)), and the ambient-temperature ratio TA,
the formulation displays two controlling fluid mechanical parameters, namely, the Reynolds number
Re = ρ′0U0a/µ

′
0 and the Froude number Fr = U2

0 /(g a). The computations shown below correspond to
m0 = 0, Pr = 0.7, LF = 1, S = 4.62, γ = 6 and TA = 1 for different values of Re and Fr.

The equations were linearized around the base flow with use made of the normal-mode decomposition

(v, p, Z,H) = (v̄, p̄, Z̄, H̄)(x, r) + (v̂, p̂, Ẑ, Ĥ)(x, r)e−iωt, (9)

leading to a nonlinear set of equations for the base flow (v̄, p̄, Z̄, H̄) (i.e., the steady counterpart of
(4)–(7)), and an accompanying set of linear equations,

iωBq̂ = Lq̂, (10)

for the eigenfunctions q̂ = (v̂, p̂, Ẑ, Ĥ), with the complex angular frequency ω = ωr + iωi emerging as
an eigenvalue of the problem. The real part of ω is the frequency of the perturbation, and is related to
the associated Strouhal number through St = ωr/π; the imaginary part is the growth rate, and dictates
whether the flame is globally stable, ωi < 0, or unstable, ωi > 0.

The equations were discretized using the finite-element software FreeFEM++ on the cylindrical domain
depicted in figure 1(a). The system of equations for the base flow is solved using a Newton-Raphson
method. The discretized version of the generalized eigenvalue problem (10) is solved using a shift-invert
method (see, for instance [11]). The radial extent of the domain was chosen to be rmax = 40; increasing
this value further was checked to have a negligible influence on the results. The streamwise extent of
the domain, xmax, was also varied. For the computations shown below, it was found that any choice
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Figure 2: (a) Eigenvalue spectra for Pr = 0.7, LF = 1, S = 4.62, γ = 6, TA = 1, Re = 100, and
Fr = 300, 400, 550, 625. (b) Real part of the streamwise velocity v̂x (left) and mixture fraction Ẑ (right)
for the eigenfunctions of the most unstable mode with Re = 100 and Fr = 300.

of xmax > 450 gives almost identical results for the base flow as well as for the most unstable mode
(that with the largest ωi), so that the numerical scheme is able to provide with sufficient accuracy both
the critical conditions for the onset of the instability, corresponding to ωi = 0, as well as the frequency
ωr of the resulting oscillations. By way of contrast, all other eigenmodes in the resulting spectra were
found to be very dependent on the domain length, even up to xmax = 450, a characteristic of the solution
arising also in isothermal-jet computations [11].

3 Sample results

The typical structure of the basic flow is presented in figure 1(b) for the case Re = 100 and Fr = 625,
including isocontours of Z̄ and T̄ . Radial profiles of axial velocity v̄x and temperature T̄ are shown on
the left-hand side at different axial positions. A thick solid curve is used to denote the flame location,
where Z̄ = Zs and T̄ = 1+γ. Buoyancy is seen to accelerate the flow in the flame envelope, promoting
the instability through the increased shear and the appearance of inflection points in the velocity profile
on both sides of the flame. Also essential for the instability is the action of the baroclinic torque induced
by the strong radial temperature—or density—gradient around the inflection points. This effect, which is
known to play a key role in the stability of inhomogeneous mixing layers [13] and low-density jets [14],
can be expected to be also essential for diffusion-flame flickering.

Figure 2(a) shows the computed eigenvalue spectra for Re = 100 and Fr = 300, 400, 550, 625. For all
cases, the most unstable eigenmode is indicated with a bigger symbol in red. Decreasing the Froude
number is seen to destabilize the flow, with marginally stable conditions reached for Fr = 300. Further
decreasing Fr would trigger the onset of a global instability mode in the flame, which would start oscil-
lating at a frequency St = 0.0191. The accuracy of this prediction was tested by comparing with results
of a direct numerical simulation for Re = 100 and Fr = 300. The resulting periodic solution, generated
with a time-dependent axisymmetric code developed earlier [12], was seen to exhibit oscillations with
St = 0.0187 (dashed line of figure 2(a)). The spatial structure of the marginally stable eigenmode is
shown in figure 2(b). The typical wavelength is seen to be of the order of 100 radii.

The instability analysis outlined above was also used to investigate effects of Reynolds number on
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the global stability of the flame. As expected, increasing the Reynolds number has a destabilizing
effect, in agreement with what is observed in low-density jets. It was found that the critical value of
Re increases for increasing values of the Froude number and that nonbuoyant flames (Fr → ∞) are
globally stable up to the largest Reynolds number Re = 2000 considered in the computations. Clearly,
additional dependences of the stability threshold on the thermochemical parameters γ and S are also
worth investigating to clarify influences of exothermicity and fuel dilution.
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