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1. Abstract

The present paper describes the development and implementation of an immersed boundary method
(IB) aimed at simulating compressible reactive flows around three-dimensional complex solid bod-
ies. The boundaries of the immersed objects are represented with a finite number of Lagrangian points,
which are distributed over the fluid-solid interface. The flowfield is described with a fully compressible
reactive multicomponent Navier-Stokes solver that makes use of high-order numerical schemes applied
to structured Cartesian grids. The corresponding density-based finite difference numerical scheme is
thus suited to compressible reactive flows representative of either combustion in high-speed flows or
detonation, see Martı̀nez Ferrer et al. [1]. The numerical algorithm is based on a third-order accurate
Total Variation Diminishing (TVD) Runge Kutta time integration scheme. It employs a seventh-order
accurate Weighted Essentially Non-Oscillatory (WENO) scheme to discretize the non-linear advective
terms while an eighth-order accurate centered finite difference scheme is retained for the molecu-
lar viscous and diffusive contributions. The numerical solver thus offers an interesting combination
of existing methods suited to the present purpose of studying compressible reactive flows featuring
shock-wave interaction with three-dimensional solid obstacles. The immersed boundary methodol-
ogy makes uses of a combined direct forcing approach and ghost-cell technique, which guarantees the
imposition of no-slip boundary conditions over the fluid-body interface. The main features of this im-
mersed boundary methodology are described below with special emphasis placed on the treatment of
boundary conditions at the immersed surface. The resulting solver has been verified by considering
a complete procedure that gathers several elementary verification subsets including, among others,
two-dimensional subsonic and supersonic flows around a cylinder, flow over a circular bump, subsonic
Blasius flow over a flat plate, etc. The performance of the new algorithm are illustrated herein on three
distinct geometries: (i) the two-dimensional supersonic non-reactive flow of air around a cylinder, (ii)
the two-dimensional moving-shock/prism interaction and (iii) the three-dimensional flow developing
around spherical-nosed projectiles fired into hydrogen-air mixtures at detonative speeds.

2. Immersed boundary set-up procedure

The classical STereo-Lithography (STL) format is employed for representing the three-dimensional
triangulated fluid-solid interface. The coordinates of the three vertices of each elementary triangle
Tk ,k = 1 , · · · ,N , where N is the number of Lagrangian triangles, allows to define the Lagrangian points
as its center of gravity (see Fig.1 ). Once the Cartesian structured computational grid generated, the ge-
ometrical IBMmodule first performs a flagging step that discriminates between solid and fluid vertices.
This numerical procedure relies on a modified ray-tracing algorithm, see Möller and Trumbore [2]. In-
correct surface representations may lead the algorithm to fail, which is secondly corrected thanks to the
consideration of additional random rays. Thus, a marker variable field M(x, t) is initialized to identify
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the fluid and solid domains:

M(x, t) =
{

ζmnp ,m = 1, · · · ,Nx1 ,n = 1, · · · ,Nx2 ,p = 1, · · · ,Nx3

}

, (1)

where Nxi is the number of points in the xi -direction and

ζmnp =















1 if x = (x1,x2,x3)
t ∈Ωf luid ,

0 otherwise
(2)

Fig. 1 Immersed boundary in a Cartesian mesh. (a): Cartesian mesh depicted together with the unstructured mesh
of the immersed boundary surface, (b): definition of a Lagrangian point xl

Thus, the set of Cartesian grid points belonging to fluid and solid domain are defined by:

Ωf luid =
{

(x1,x2,x3)
t ∈Ω with ζmnp = 1

}

, Ωsolid =
{

(x1,x2,x3)
t ∈Ω with ζmnp = 0

}

(3)

Note that (i) we have Ωf luid ∪Ωsolid =Ω, and (ii) Ωf luid ∩Ωsolid denotes the fluid-solid interface.

The solid points having at-least one fluid neighbour (ghost point GP in Fig.2 ) are identified as :

ΩGP =
{

(xm,yn, zp)
t ∈Ωsolid if ∃(xi ,yj , zk )

t ∈Ωfluid s.t. i ∈ Im ∨ j ∈ In ∨ k ∈ Ip
}

(4)

where Im=[m − 3,m + 3], In=[n − 3,n + 3] and Ip=[n − 3,n + 3]. From each ghost point, a vector normal
to the nearest boundary triangle is built to locate the image of the corresponding ghost point that
belongs to the fluid domain. The flowfield variables at each image point are then interpolated from the
surrounding computational nodes. The corresponding flowfield variables are subsequently reflected
back to the corresponding ghost points to ensure the requisite zero-flux boundary conditions. The
definition ofΩGP includes at least three layers of ghost points, which are needed for the seventh-order
WENO flux interpolation. Note that this is the same requirement as the one requested for standard
ghost points at the boundaries of the computational domain [1]. The unique image point associated
with a ghost point is defined as:

GIP = {(x∗,y∗, z∗) ∈Ωfluid s.t. ∃!(x,y,z) ∈ GGP ∧ D [(x∗,y∗, z∗) ⊥ T ] =D [(x,y,z) ⊥ T ]} (5)

where D [(x,y,z) ⊥ T ] represents the orthogonal distance from a given point (x,y,z) to the elementary
triangle Tk , which is the closest to (x,y,z) . The following linear approximation is used to impose a Neu-
mann boundary conditions for solid-fluid interface and fix the flow-field variables at any ghost point,
ϕGP = ϕIP where ϕ is a given variable. To proceed with this condition, one needs to fix the representative
flow-field variables at each image point. This can be achieved by using different interpolation tech-
niques, exploiting the available flowfield variables at the eight surrounding neighbouring nodes NPk
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Fig. 2 Immersed boundary procedure. Ωsolid, solid domain; Ωfluid, fluid domain; GP , ghost point; BP, boundary
point; IP, image point; NP, neighbor points in fluid domain corresponding to each IP.

with k = 1, · · · ,8 (see Fig.2 for the 2D case). Each element of GGP can indeed be associated with four
computational nodes:

ϕIP =

4
∑

k=1

ΦkϕNPk
where Φk =

ηk

d2k

















4
∑

j=1

1

d2j

















−1

(6)

dk being the distance of the corresponding image point from each NPk and ηk = 0 if NPk ∈ Ωfluid

and 1 otherwise. For cases arising from dk → 0, contribution of NPl (l , k) can be neglected to en-
force ϕIP = ϕNPk . In this work, dk is considered to be negligible if dk/d ≤ ǫ, with ǫ = 10−10 and

d =
√

∆x2 +∆y2 +∆z2, where ∆x, ∆y, ∆z are grid spacing. The flow-field parameters at the image
points are then evaluated from

TIP =

4
∑

k=1

ΦkTNPk
, PIP =

4
∑

k=1

ΦkρNPk
TNPk

R/WNPk
, YαIP

=

4
∑

k=1

ΦkYαNPk
(7)

whereW denotes the molecular mass of the mixture, and R is the universal gas constant. The molecular
mass and density at the image points are calculated from

WIP =















N
∑

α=1

YαIP
/Wα















−1

, ρIP = PIPWIP/RTIP (8)

whereWα is themolecular mass of the α-species. In this study, themethod is used tomodel an adiabatic
boundary and, from a numerical standpoint, adiabatic wall conditions are straightforwardly obtained
from:

un|wall = 0,
∂ut
∂n

∣

∣

∣

∣

∣

wall
= 0,

∂T

∂n

∣

∣

∣

∣

∣

wall
= 0,

∂P

∂n

∣

∣

∣

∣

∣

wall
= 0 (9)

This is equivalent to state that unIP
= 0, utIP = utGP , TIP = TGP and pIP = pGP.

Finally, at each ghost point, the values of the conservative variables are settled from:

ρGP = ρIP (10)

(ρui )GP = ρIPuiIP , i = 1, · · · ,3 (11)

(ρet)GP = ρIPhmIP
−PIP + ρIP(uiIPuiIP )/2, (12)

(ρYα)GP = ρIPYαIP
, α = 1, · · · ,N, (13)

3. Results and discussion

3.1. Supersonic flow around a circular obstacle

As a preliminary validation step of the proposedmethodology, we simulate a supersonic air flow around
a circular cylinder. The free streamMach number value is set toM = 3.5. Dirichlet boundary conditions
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are set at the inlet of the computational domain while extrapolation rules are used at the outlet. Slip
wall boundary conditions are imposed at top and bottom boundaries. The numerical simulations are
performed on a structured, non-uniform, single-block grid featuring 2400 × 600 computational cells,
and the immersed boundary is modelled with 160 Lagragian points (see Fig.3 (a) ).

(a) (b)

Fig. 3 (a): computational domain with the immersed circular obstacle, (b): schematic view of a deflected supersonic
flow and definitions of the angles θ and β.

Fig.4 displays a numerical Schlieren image. From a qualitative point of view, the computed flowfield
does not seem to be altered by spurious unphysical pressure oscillations.

Fig. 4 Supersonic flow over circular cylinder: numerical Schlieren picture

The local properties of the flowfield behind curved detached shocks allow to perform the same type of
calculations as the one issued from standard oblique shock-wave relationships:

tan(θ) = 2cot(β)

[

M2 sin2 β − 1

M2(γ + cos(2β)) + 2

]

(14)

where θ is the streamline deflection angle and β is the orientation of the oblique shock-wave relative to
the horizontal direction ( see Fig.3 (b) ).

Fig.5 (a) reports a comparison performed between the expression of (θ,β) given by Eq. 14 and nu-
merical simulation results. The obtained level of agreement is quite satisfactory. Fig.5 (b) displays
a comparison performed between the present numerical results and those previously documented by
Chaudhuri et al. [3]. The quality of the agreement obtained with the computational results issued from
the simulation performed on Mesh#3 further confirms the performance of the present methodology.

3.2. Moving-shock/ two-dimensional wedge interaction

The second validation test-case is the impingement of a planar shock on a two dimensional wedge.
This problem has been studied experimentally by Schardin [7]. The problem setup is a follows : a
Mach 1.30 shock located upstream of the wedge is initialized, when the shock moves across the wedge,
the impingement of the planar shock generates a complex compressible flowfield featuring multiple
Mach stems and triple points, reflected and scattered shocks, slip lines, acoustic waves and vortices as
depicted in Fig.6 . The computational domain is displayed in Fig.7 . Extrapolation rules are used at all
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Fig. 5 Illustration of the (β,θ)-relation (M = 3.5), (a): comparison between computational results and Eq. 14, (b):
comparison with the results of Chaudhuri et al. [3].

boundaries and the computation is performed on a structured grid ofNx ×Ny = 3501×2501 cells while
the wedge surface is delineated with 1800 Lagrangian points.

Fig. 6 Various waves arising in Schardin’s problem with RS: reflected shock, IS: incident shock, SL: slip line, MS:
Mach stem, TP: triple point and V: vortex.

Fig. 7 Sketch of the geometry retained for the computational study of the shock structure passing over a wedge in
a channel

Fig.9 highlights the comparison between the present simulation and the results of Chaudhuri et al. [3]
and Chang and Chang [8] in terms of triple point trajectories and vortex location. It can be seen that
the simulated time evolution of the two triple points and the locus of vortex core is in quite good
agreement with previous numerical and experimental results. Three instantaneous shadowgraph pic-
tures are compared with the experimental shadowgraph reported in [7]. From Fig.9, It is clear that
the numerical method is able to reproduce the global flow characteristics and capture the complex
compressible flowfield of Schardin’s problem.

�
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Fig. 8 Triple point trajectories and position of the vortex center (• :experimental data [8], ▽ : numerical results of
Chaudhuri et al. [3], N : present simulation

Fig. 9 Snapshots of numerical (top) and experimental (bottom) [7] Schlieren images at different instants

3.3. Hypervelocity spherical-nosed projectile fired into a reactive mixture

Finally, the high-speed projectile experiments of Lehr [5] are considered. The reactive flow is made
of a stoichiometric H2:O2:N2 reactive mixture (molar ratios 2:1:3.76). The geometry of the projectile
corresponds to a sphere-cylinder of R= 75 mm diameter. The free stream conditions are T∞ = 293 K
and p∞ = 42.663 kPa and we consider the Mach number condition M = 4.48. These conditions are
retained to enable direct comparisons with experimental results gathered by Lehr [5]. Simulations are
carried out on a rectangular domain of lengths Lx × Ly × Lz = 15R×10R×10R (see Fig.10 ).

Fig. 10 Sketch of the geometry retained for the computational study of the hypervelocity projectile

The computational mesh is a structured grid featuring approximately 3.6 million cells while the im-
mersed boundary is modelled by using 2600 Lagragian points. The chemical kinetics is described with
the detailed mechanism of O’Conaire et al. [4] which does involve of 19 elementary reaction steps and
9 chemical species. A preliminary sketch of the obtained computational result is provided in Fig.11 .
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Fig. 11 Supersonic flow around the spherical-nosed projectile. Back: Schlieren snapshot, bottom: Mach number
field evaluated in the horizontal median plane from the longitudinal velocity component.

4. Conclusions and prospect

In this paper, we described the implementation of an immersed boundary method (IBM) in a fully com-
pressible reactive multicomponent Navier-Stokes solver that makes use of high-order WENO schemes
applied on structured Cartesian grids. Themethod is successfully applied to the computations of super-
sonic complex flows of practical interest for high-speed combustion and detonation and thus appears to
be well-suited for these conditions. This will allow to simulate flow conditions that are representative
of RAM accelerators (RAMAC), which are used to accelerate projectiles to very high velocities [6]. In the
present set of numerical simulations, the immersed object was considered to be at rest in high-speed
flows; a challenging and natural extension of the present study will therefore concern the application
of the same methodology to moving boundaries. It seems that the marker function approach retained
herein may provide compelling advantages to deal with such moving bodies.
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