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1 Introduction 

Although advances in computing power allow nowadays for detailed numerical simulation of a wide 

variety of systems, there is continuing demand for the development of model order reduction 

techniques. This is due to the fact that fast but accurate models are necessary in real-time control 

applications or in the detailed study of the systems characterized by a large number of parameters. 

Perhaps the most widespread and powerful technique, especially when it comes to the reduction of 

nonlinear infinite dimensional systems described by evolutionary partial differential equations (PDEs), 

is proper orthogonal decomposition (POD) [1]. Based on experimental or numerically-derived 

observations, it provides a set of optimal, in the sense of L
2
 norm, empirical basis functions, which can 

be easily incorporated in a classical subspace projection techniques for model order reduction such as 

the Galerkin method. 

POD has been widely employed for model order reduction in many fields, however there are still a 

number of issues that need further investigation. Among the others, the policy of the collection of the 

representative set of experimental or simulation data is considered to be crucial for generating a global 

basis suitable for the determination of accurate reduced order model (ROM). At present, there exists 

no unequivocal procedure for optimal snapshot selection. It is well known that a potentially 

representative ensemble of data can be obtained by combining data from different simulations, 

conducted for  different values of key parameters [2] or characterized by high spatiotemporal 

complexity [3,4]. However, while the exploration of the parameter space is a well established policy, 

there is no clear indication in the literature about the influence of the total number of snapshots and 

their temporal distribution on the ROM performance. Recently, the influence of the number of 

snapshots both for constant and variable time step sampling was examined in [5]. An alternative 

approach, based on the mutual information, for the selection of the most uncorrelated snapshots was 

proposed in [6].  

In this work, the method of POD is applied to a problem of a self-ignition of a coal stockpile, 

described by one-dimensional reaction-diffusion equations [7-9]. Aiming at the improvement of the 

ROM performance, different sampling strategies for the collection of the observation are studied. 

Particularly, the performance of a POD model determined from a uniformly time sampled set of 

representative solutions is compared with an innovative approach based on k-means clustering of 

solution profiles [10].   
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2 Mathematical model 

The governing equations are those describing a classic reaction-diffusion problem. In case of a 

heterogeneous reaction in a one-dimensional layer, the model equations, in dimensionless form, are [8]:  
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where Y is the concentration of the gas reactant and T is the temperature, assumed to be equal for gas 

and solid phase. The associated boundary and initial conditions are:  
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with x=0 and x=1 corresponding to the top (ambient temperature and concentration at the left boundary) 

and to the bottom of the pile, respectively. As reported elsewhere [7-9] the system exhibits interesting 

dynamical behavior. In the present study, the values of the Lewis number, Le, the dimensionless heat 

of reaction, β, and the Thiele modulus, φ, were set, respectively, to the following values [7]: 

20.233, 70000, 4.287Le      

whereas the dimensionless activation energy,  0E RT  , containing the reference (ambient) 

temperature, was initially set to γ=12.4. For this set of parameter values, the transient system, after 

ignition, converges to a period 1 limit cycle (Figure 1). 

3 Proper orthogonal decomposition and k-means clustering 

For a given set of snapshots  , , 1,...,iu t i Mx , the POD basis  1 2, , , N     can be obtained 

by solving the eigenvalue problem given by [1]: 

C C   

where C  is the autocorrelation matrix defined as: 

     , ,T

i iC u t u tx,y x y  

with   denoting ensemble average over the number of snapshots M. 

Then, using the POD modes, the solution  , iu tx  can be expressed, in a truncated form, as: 

     
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K

i k i kk
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
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where K N  is the truncation order, whereas  , 1, ,k ia t k K  are modal coefficients to be 

determined solving a system obtained by performing the Galerkin projection of the original system 

onto POD modes [2-4]. Usually, the snapshots employed for the determination of the POD basis are 

collected at uniform time-sampling rate. In order to increase the amount of information contained in a 

given number of POD modes, this classical approach is compared here with a procedure based on the 

so-called k-means clustering [10]. Namely, the solution profiles are first grouped into M clusters and 

then the POD modes are determined from the centroids of the clusters. More precisely, the k-means 

algorithm groups together subsets of 'nearby' solutions, on the basis of a mutual distance, in this case 

defined as a squared Euclidean distance. 
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4 Results and discussion 

To test the influence of the number of snapshots and their distribution on the performance of the POD-

based ROM, the infinite dimensional model was first reduced to the system of ordinary differential 

equations employing finite difference approximation of the spatial derivatives with N=201 nodes, 

constructing what we here call the full order model (FOM). The FOM was then integrated in time for 

 0,15f   , and 10000 snapshots were collected. In the first step, the POD method was applied to a 

subset made of M=200 uniformly time-sampled solutions. The POD modes computed were then used 

to determine ROMs of different truncation order. Figure 1 shows a comparison of temperature and 

concentration evolution at x=0.2 obtained using the FOM and two ROMs constructed employing K=3 

and K=10 modes (for each state variable) respectively. As expected, due to the complexity of the 

solution consisting of a fast transient converging to period-1 stable oscillations, it can be observed that, 

the performance of the ROM is not satisfactory if too little modes (here K=3, green dots) are employed 

in the reduction phase. For K=10, the ROM solution (red dots) is so accurate that it is superimposed to 

the FOM (blue line) solution.  

 

Figure 1. Comparison of temperature and concentration at x=0.2 obtained using FOM and ROM with K=3 and 

K=10; both ROMs determined from M=200 uniformly distributed in time snapshots. 

Successively, in order to investigate the influence of the sampling onto the ROM performance two 

sampling strategies were utilized and compared. Namely, the POD was performed on: 

- snapshots collected at uniform frequency both during transient and steady oscillations; four sets of 

the total number of snapshots equal to M=25, 50, 100 and 200 were considered for this case; 

- centroids of the snapshots grouped into M=200, 100, 50, and 25 clusters. 

It is quite evident that, when the dataset is constructed based on the averaging of the clustered 

solutions, profiles contain more information from the transient, during which solution profiles 

typically are more distant from each other. Figure 2 shows centroids of the k-means clustered solutions 

used as the input to the POD procedure for M=25.  

Eight data subsets were extracted from the FOM solution data, and POD was performed on each 

subset. Successively, the ROMs were determined and simulated, initially at reference conditions, i.e. 

for γ=12.4. 
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Figure 2. Centroids of the clustered concentration (a) and temperature (b) profiles for M=25. 

To evaluate the effect of the two sampling strategies quantitatively, an average least-square truncation 

error is defined as:  
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where   is the L
2
 norm while   denotes an average over M. Figure 3 reports the average least-

squares truncation error of ROMs obtained using POD bases determined from subsets containing 

M=25 and M=200 samples. It can be observed that, for low truncation orders, i.e. 8K  , the sampling 

strategy does not influence the accuracy of the ROM solution, whereas for larger truncation orders 

( 8K  ) the desired accuracy of the ROM solution, i.e. 
4

10K


 , is achieved. We hence focus on the 

latter cases for the comparison. With standard POD, as the number of samples M increases, the 

amount of information included in the POD basis, to some extent, increases and so does the 

performance of the ROM. On the other hand, with k-means clustering, the best performers are the 

ROMs constructed by projection of the FOM onto the basis determined with a low number of clusters. 

This is explained by the fact that clusters, being in low number, are more "distant" from each other and 

therefore carry the most of information on the system dynamics. Increasing the number of clusters 

does not increase the amount of information introduced into the data subset, as the clusters simply tend 

to overlap. 

 
Figure 3. Average least-square truncation error at reference conditions (γ=12.4). 
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Figure 4. Transient (a) and limit cycles for γ=12.3, γ=12.4 (reference condition) and γ=12.5. 

These trends preserve when testing ROMs at off-reference conditions, i.e. at different values of the 

activation energy γ. Figure 4 shows time series (a) and limit cycles (b) obtained by means of the FOM. 

For k-means clustering at K=10 or larger, the plots are superimposable to FOM results. To quantify the 

reconstruction accuracy for various values of K and for different ROM strategies, the average least-

square truncation error was evaluated and then plotted in Figure 5. It is interesting to note that the 

performance of the ROM based on the uniform sampling improves for γ=12.3, different from the 

reference case, from which the basis was built. This can be explained with the fact that, for γ=12.3,  

the spatiotemporal complexity of the solution decreases, as it can be seen in Fig. 4a. The opposite is 

observed for γ=12.5, value that yields a more complex spatiotemporal pattern (the amplitude of the 

oscillations increases). 

 

Figure 5. Comparison of average least-square truncation error at reference conditions, γ=12.4, and off-reference 

conditions, γ=12.3 and γ=12.5. 

Another interesting finding is the computational time of both ROMs, normalized here with respect to 

the CPU time required to solve the FOM. Same number of ODEs, same integration time interval, 

lower computational effort: the use of adaptive ODE solver demonstrates that the equation system has 

smoother features. The ROMs determined using k-means clustering tend to be more stable and hence 

faster then those constructed using uniformly distributed numerical sampling. 



Bizon, K.                                                                 Reduced order modeling of self-igniting reaction-diffusion 

25
th

 ICDERS – August 2-7, 2015 - Leeds 6 

 Table 1: Computational time normalized with respect to the time required to solve the FOM. 

 ref. cond.: γ=12.4 γ=12.3 γ=12.5 

K k-means uniform k-means uniform k-means uniform 

3 0.1389 0.2003 0.1704 0.2911 0.1241 0.1897 

6 0.2022 0.2329 0.2145 0.2449 0.1974 0.2041 

10 0.3099 0.3099 0.3279 0.3159 0.2628     0.2852 

15 0.3617 0.3663 0.3590 0.3417 0.3345     0.3334 

5 Conclusions 

In an attempt of improving the performance of POD-based reduced order models (ROMs) of a 

reaction-diffusion system, the influence of two different sampling strategies on the solution was 

investigated. First, POD modes were determined from databases that consisted of various number of 

samples collected at constant frequency. Then, an innovative approach based on the clustering was 

introduced and evaluated. It appears that, for low values of the total number of observations, the new 

approach ensures more stable and more accurate ROMs, with one third of the CPU time with respect 

to the full order model. The results obtained confirm that a proper choice of the sampling strategy can 

not only improve the performance of the ROM, but can also reduce significantly the size of the 

eigenvalue problem to be solved when building the POD modes, and, by designing an appropriate 

clustering procedure, reduce the amount of data to be computed and stored. 
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