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Abstract

The propagation of slow quasi-isobaric premixed flames between two closely spaced parallel and adia-
batic plates is investigated numerically with the use of a quasi-2D formulation based on an averaging of
the flow quantities across the direction perpendicular to the plates. The formulation arises when the ratio
of the plates separation to the flame thickness becomes small, that is, for values of the Peclet number,
Pe = h/δT � 1. Front shapes and propagation rates are computed based on this formulation to capture
the effect of the intrinsic instability mechanisms.

1 Introduction

It is well-known that hydrodynamic instabilities, that do not depend on flame structure, can wrinkle
the flame front and modify the overall propagation rates, although the gas flow remains laminar. These
instabilities can be enumerated as the Darrieus-Laundau (DL) instability (due to thermal expansion),
the Rayleigh-Taylor (RT) instability (due to buoyancy effect), and the Saffman-Taylor (ST) instability
(due to viscosity contrast across the flame), the latter showing only considerable effects in very con-
fined flows. Another important instability mechanism, independent of the flame-fluid interaction, is the
diffusive-thermal (DT) instability. In this case, when the effective Lewis number, Le, which measures
the unequal rates of species diffusion and heat conduction, is less than a critical value close to unity, the
planar laminar flame becomes unstable to cellular structures [1].

Joulin and Sivashinsky [2] expanded the models based on the theory of infinitely thin flame, where
burned and unburned region are separeted by a discontinuity, in order to investigate the effect of losses
of momentum and heat into the intrinsic instabilities. For that purpose, they considered a premixed flame
propagating between parallel plates (also known as Hele-Shaw cell), obtaining a dispersion relation for
the growth rate of these instabilities. However, the DT instability was not able to be incorporated in this
model due to its limitation. Recently, Kang et al. [3, 4] investigated the effect of heat and momemtum
losses in the intrinsic flame instabilities by using a complete 2D numerical simulations of the Navier-
Stokes equations and the conservation equations for the species with a one-step irreversible reaction,
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also in a Hele-Shaw cell configuration. The ST instability mechanism was incorporated when including
the viscous force in the direction perpendicular to the plates in the 2D formulation.

The present work shows a quasi-2D formulation, that emerges in the limit of very close plates, capable
of capturing the effect of the intrinsic instability mechanisms on the front shapes and propagation rates.
The adopted approach is an extension of recent studies based on the limit of narrow channels [5, 6].

2 Formulation

Consider a premixed flame that propagates between two closely spaced parallel and adiabatic plates.
The premixed flame is modelled with an irreversible one-step kinetics, F +O → P , where F , O and P
stand for the fuel, the oxidant and the products, respectively. In the formulation, we consider a mixture
lean in fuel, so the oxidant, in excess, remains nearly constant.
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Figure 1: Sketch of the Hele-Shaw cell with a curved flame propagating from the left to the right between
two parallel plates with a cell gap h.

If the speed SL and the thermal thickness δT of a planar adiabatic flame are used as the reference
scales for an appropiate non-dimensionalization, where δT = DT /SL, and the state of the fresh unburnt
mixture for density ρu, temperature Tu, and fuel mass fraction YFu are introduced, the dimensionless
variables become

x = x′/δT , y = y′/δT , z = z′/h, t = SLt
′/δT ,

u = u′/SL, v = v′/SL, w = w′/(PeSL),

ρ = ρ′/ρu, p = p′ Pe2/(12Pr ρuS
2
L), G = g′δT Pe2/(12Pr S2

L),

θ = (T ′ − Tu)/(Ta − Tu), Y = YF /YFu ,

where the prime ′ denotes a dimensional value. Pr corresponds with the Prandtl number, p is the
reduced kinematic pressure, G is the reduced gravity field in the direction of the flame propagation,
and Ta = Tu + QYFu/cp is the adiabatic temperature, with Q being the heat of combustion per unit
mass fuel, and cp the specific heat of the mixture at constant pressure, taken as a constant value in what
follows.

The ratio of the plates separation to the flame thickness is denoted as the Peclet number, Pe = h/δT . In
the limit of two closely spaced plates, Pe � 1, all variables can be expanded in power of Pe, according
to f = f0 + Pe2 f1 + O(Pe4), where f stands for the temperature θ, mass fraction Y , density ρ,
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pressure p, and the velocity components u, v, and w. Following the above procedure and making use of
the adiabatic condition in the plates, we obtain, at first order, the following equations

ρ
∂θ

∂t
+ ρUx

∂θ

∂x
+ ρUy

∂θ

∂y
= ∇ · (µ∇θ) + ω, (1)

ρ
∂Y

∂t
+ ρUx

∂Y

∂x
+ ρUy

∂Y

∂y
=

1

Le
∇ · (µ∇Y )− ω, (2)

where

ω(θ, Y ) =
β2

2s2LLe

(1 + γ)2−σ

(1 + γθ)2
Y exp

{
β(θ − 1)

1 + [γ/(1 + γ)](θ − 1)

}
.

β = E(Ta − Tu)/RT 2
a is the Zel’dovich number, γ = (Ta − Tu)/Tu is the heat release parameter, Le

stands for the Lewis number, and σ corresponds to the exponent of the temperature-dependent viscosity
coeficient µ = (1 + γθ)σ. The reduced planar flame speed sL = SL/(SL)asp is introduced for conve-
nience, with the asymptotic value being (SL)asp =

√
2LeBρuDTuλb/(β2λu) (ρb/ρu) exp (−E/2RTa).

Herein, B is the frequency factor, DTu is the value of the thermal diffusivity in the unburnt condition, and
λu, λb, and ρb are the values of the thermal conductivity and density in the unburnt and burnt conditions,
respectively. E and R stands for the activation energy and the universal gas constant, respectively.

The problem is completed with the reduced Darcy’s law for the z-averaged velocity

Ux ~ex + Uy ~ey =

(∫ 1

0
u dz

)
~ex +

(∫ 1

0
v dz

)
~ey = − 1

µ
(∇p− ρG~ex), (3)

the Laplacian equation for the pressure field

∆p− (1 + σ)G
∂ρ

∂x
+

σ

ρ
∇ρ ·∇p = −γµ [∇ · (µ∇θ) + ω] , (4)

and the equation of state
ρ = 1/(1 + γθ). (5)

The combustion field is obtained finally by solving the Eqs. (1)-(5) together with the corresponding
boundary conditions.

3 Numerical computations and results

The system of equations was discretized using a first order in time and a second order in space finite
differences. Time-dependent computations were carried out in a domain large enough, typically with
size of 200×100, to capture correctly the wrinkled flame structures. The cell size ∆ = ∆x = ∆y was
varied in an uniform grid between 0.2 and 0.4, that is, allowing about 4 to 6 points within the reaction
zone. Periodic boundary conditions were used in the transverse boundaries

θ(x, ymin) = θ(x, ymax), Y (x, ymin) = Y (x, ymax),

Ux(x, ymin) = Ux(x, ymax), Uy(x, ymin) = Uy(x, ymax).
(6)

The pressure at the left side was taken as constant and equal to the ambient pressure, and the state of the
mixture assumed uniform for simplicity

x = xmin : p = 0, ∂θ/∂x = ∂Y/∂x = 0. (7)
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At the right side zero velocity was impossed, together with uniformity of the state of the mixture

x = xmax : Ux = Uy = 0, ∂θ/∂x = ∂Y/∂x = 0. (8)

The mixture was ignited with three hot spot (where the temperature follows a Gaussian distribution)
at the left side in the points (x, y) = (0, 0), (0, 50), and (0, 100). As shown in Figure 4, the first
stage corresponds with an acceleration due to thermal expansion, following an steady/unsteady flame
propagation, where cell splitting of merging can occur. In the final stage the frame front speed decreases
due to the nearness of the end-wall effect. There is a relation between the front speed ST and the total
burning rate Ω = (

∫ xmax

xmin

∫ ymax

ymin
ω dx dy)/Ly, where Ly is the length in the y direction. In the case

of steady propagation the solution is independent to translation and one can integrate the Eq. 2 in a
reference frame moving at ST . Using the boundary conditions (6)-(8) one finds that Ω = ST /SL. The
reduced front speed ST /SL is then calculated following this procedure to characterize the flame front
propagation velocity.

The effects of buoyancy, viscosity contrast or differential diffusion on the flame wrinkling was studied
separately. The case in Figure 2c) with Le = 1, β = 10, γ = 5, σ = 0, and G = 0 is used as
the baseline calculation. It evolves to a steady propagation. This case exhibits flame wrinkles only
due to the DL mechanism, which propagate at velocities about 1.5 times faster than the planar flame
velocity; see Figure 4. Figures 2d) - 2e) show the stabilizing effect of flames propagating in the direction
of the gravity (G > 0). Numerical computations revealed a stable planar flame front propagation for
values of G & 5 in the case of Le = 1, indicating that the RT mechanism is competing with the DL
instability. Flame wrinkles increase for larger negative values of G, as in the classical instability theory,
see Figures 2a) - 2b).

The Figure 3a) depicts the effect of the viscosity contrast, included through the parameter σ = 0.7.
This effect changes the number of waves accommodated in the vertical domain. The main effect is an
increase in the front speed with values of 2 times the planar flame velocity (see Figure 4), larger than
the baseline case. When the value of Le is decreased the DT instability mechanism is introduced in the
computations. The Figure 3b) shows cell formation patterns for Le = 0.3. This case shows an unsteady
propagation with lateral movements and large values of the flame speed of the order of 7 times the planar
flame speed; see Figure 4. The results are in qualitatively good agreement with the structures found in
recent experiments of very lean hydrogen mixtures [7].
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Figure 2: Flame fronts represented by the reaction rate contours and the flow velocity vectors calculated
for Le = 1, β = 10, γ = 5, σ = 0, with increasing values of G (upward propagation for G < 0 and
downward propagation for G > 0).

25th ICDERS – August 2–7, 2015 – Leeds 4



Fernández-Galisteo, D. Premixed flame propagation

Finally, in Figure 4 is plotted the values of the front speed for five different cases. In the case G = 2,
the front speed reaches a steady propagation with ST /SL ≈ 1.1. This is due to the small amplitude of
the curved flames compared to the baseline case G = 0. The reverse is also true for G = −2. In the
case Le = 0.3 the front speed shows large values, even when the value of γ was reduced to 2.5, due to
the cell structures formed. The effect of the viscosity contrast was to increase the front speed up to 30%
with respect to the baseline case.
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Figure 3: Flame fronts represented by the reaction rate contours and the flow velocity vectors calculated
for a) Le = 1, β = 10, γ = 5, σ = 0.7, G = 0 and b) Le = 0.3, β = 10, γ = 2.5, σ = 0, G = 0.
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Figure 4: The reduced front speed with the dimensionless time for 5 cases. Solid curves: (centre) for
G = 0, σ = 0, Le = 1; (down) for G = 2, σ = 0, Le = 1; (up) for G = −2, σ = 0, Le = 1. Dashed
curve: for G = 0, σ = 0, Le = 0.3. Dot-dashed curve: for G = 0, σ = 0.7, Le = 1.
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4 Conclusions and future work

In the limit of two closely spaced parallel plates, the Peclet number, Pe = hSL/DT , based on the
laminar flame velocity, is used as a parameter of expansion to obtain a simplified model that allows the
study of flame instabilities in confined flows. Time-dependent computations with only the DL mecha-
nism included results in wrinkled flame structures. They compete with the RT mechanism when G > 0
and are able to stabilize the flame wrinkles to planar flame fronts for a sufficently large positive value
of G. The DT instability modifies the flame wrinkles through cell formation, increasing significantly
the front speed. The front becomes unsteady with lateral movements. The effect of the ST instability
mechanism is introduced through the parameter σ. For the typical values of σ = 0.7 the calculations
show an increase of about 30% in the front speed with respect to the baseline case. The number of waves
accommodated in the domain is also different.

The validity of the results in the limit Pe � 1 needs to be checked with 3D computations, where the
effect of the curvature in the third coordinate z plays a role.
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