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1 Introduction

Ground-water contaminants often persist in low-permeability regions, in which the flow rate is small.

Fortunately, many soil microbes are able to degrade common pollutants and are chemo-tactic, meaning

that they can migrate toward chemical concentrations that they find desirable, [1, 2]. In fact they can be

highly motile: typical microbe swimming speeds are of order 10−3−10−2 cm s−1, whereas groundwater

flow speeds are in the range 10−1 − 10−4 cm s−1. Chemo-taxis may increase degradation of ground-

water contaminants both by drawing microbes into contaminated regions with low ground-water flow

rates, and by enabling them to follow contaminant gradients caused by their own consumption of pollu-

tants [3, 4].

In this work, we consider the movement and growth of microbes in a saturated porous medium with

zero flow. Specifically, we consider a system of equations that describe the fate and transport of mi-

crobes induced by a contaminant gradient (chemo-taxis) and diffusion, and in which their growth and

the degradation of the contaminant is described by a Monod kinetics model.

2 Governing equations

The system is described by the following equations

∂c

∂t
= Dc∇2c− f(b, c)

Y
a),

∂b

∂t
= −∇ · (bv) +Db∇2b+ f(b, c)− dbb b). (1)

Here c is the contaminant concentration, b is the microbe concentration, Dc is the contaminant diffusion

coefficient, Db is the microbe diffusion coefficient, Y is the yield coefficient.

The microbe growth rate is given by Monod kinetics:

f(b, c) =
µcb

Kc + c
, (2)

where µ is the growth coefficient and Kc is the saturation coefficient. db is the microbe death rate.
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The chemo-tactic velocity is given by

v =
χKv

(Kv + c)2
∇c, (3)

where χ is the chemo-tactic sensitivity and Kv is the chemo-tactic saturation constant. Note that v is of

the same form as ∇(f/b).

It is convenient to non-dimensionalise these equations by setting

x′ =
x

L
, y′ =

y

L
, t′ =

tχ

L2
, c′ =

c

c0
, b′ =

b

b0
. (4)

Here L is size of region and c0, b0 are the initial concentrations.

The equations then become

∂c′

∂t′
=

1

Pc
∇′2c′ − Dg

Y ′
f ′ a),

∂b′

∂t′
= −∇′(b′v′) +

1

Pb
∇′2b′ +Dgf

′ −Ddb
′ b). (5)

where

f ′ =
c′b′

(Kc/c0 + c′)
, Y ′ =

c0Y

b0
, v′ =

L

χ
v =

(Kv/c0)

(Kv/c0 + c′)2
∇′c′, (6)

The dimensionless parameters are

Contaminant Peclet No Pc =
χ

Dc
, Microbe Peclet No Pb =

χ

Db
,

Growth Damköhler No Dg =
µL2

χ
, Death Damköhler No Dg =

dbL
2

χ
.

For L = 100 cm with Pseudomomas Putida consuming naphthalene in a porous medium with beads of

size 250− 300 µm we get

Pc = 0.89, Pb = 8.9× 103, Dg = 1.3× 106, Dd = 2.1× 104.

This tells us that microbe diffusion is negligible compared to contaminant diffusion and microbe death

is much less important than microbe growth.

3 Shocks

In one dimension, equations (5) reduce to

∂c

∂t
= −Dg

Y
f a),

∂b

∂t
= −∂(vxb)

∂x
+Dgf b). (7)

if we neglect diffusion (note that we have suppressed the primes).

Differentiate (7a) to get

∂

∂x

∂c

∂t
=

∂cx
∂t

= −Dg

Y

∂f

∂x

(

cx ≡ ∂c

∂x

)

. (8)

(7b) (without the source term) and (8) constitute a non-linear hyperbolic system whose wave speeds are
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λ± =
1

2
[vx ±

√
(v2x + 4vxf/cx)] (9)

The shock relations are

s(bl − br) = vxlbl − vxrbr, a), s(cxl − cxr) =
Dg

Y
(fl − fr) b). (10)

It can be seen that b and cx can become discontinuous, whereas c must remain continuous.

4 Simple solution for a chemo-tactic wave

Equations (7) admit chemo-tactic waves, which are analogous to detonation waves. On dimensional

grounds we must have

Speed of wave ∝ D
1/2
g , Thickness of wave ∝ D

−1/2
g .

Since Dg is large, this means that the wave are thin.

If the initial contaminant concentration, c0, is small compared to Kc and Kv, then we can define new

units in which

f = bc, vx = ∇c.

In this case we can find a simple solution for a steadily travelling one dimensional chemo-tactic wave.

Let ξ = x− st, where s is the speed of the wave. The solution consists of a shock travelling with speed

s with b = 0 for ξ > 0, b = Y for ξ < 0. c is given by

c = 1 for ξ > 0, c = exp

(

Dg

s
ξ

)

for ξ < 0.

The speed of the wave is s = D
1/2
g and its thickness is 1/D

1/2
g , as expected. Note that the positive

wavespeed vanishes in the frame of the wave at x = −0.6931 i.e. there is a sonic point. However,

unlike a detonation, the reaction rate does not vanish at the sonic point.

5 Numerical scheme

Despite the apparent simplicity of the system, the Riemann problem is quite complicated. However,

since there are only two waves, it is eminently suited to an HLL scheme. The diffusive fluxes can be

calculated with a with central difference, as usual. However, there remains the problem of calculating

∇c for the chemo-tactic term. There are two obvious possibilities:

Method 1: Get ∇c by numerical difference of c. This works well enough if the waves are well resolved,

but it is not properly upwind. However, it is simple and introduces no extra variables.

Method 2: Take the gradient of the c equation, define new variables ∇c and solve the resulting equation.

Although this gives better shock capturing, it has more variables and the numerical solutions for c and

∇c are not automatically compatible.

We therefore opt for method 1.

Figure 1 shows a comparison between the numerical and exact solutions for Dg = 1.0. It is clear that

the agreement is very good except for a slight lack of monotonicity at the shock, which is a consequence

of opting for method 1. The numerical wave speed is 0.994, which is is very close to the exact wave

speed of 1.
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Figure 1: Simple one dimensional chemo-tactic wave. The line is the exact solution, the markers from

the numerical calculation

.

6 Realistic one dimensional chemo-tactic wave

Figure 2 shows the numerical solution for a wave with the parameters discussed in section 2, except

that microbial death is neglected since it has no effect on the wave. Note that Y = 0.538. The lower

resolution run (markers) had ∆x = 12.8 × 10−6 and gave a wave speed of 2.0728 × 103, whereas the

higher resolution run (line) had ∆x = 6.4 × 10−6 and a wave speed of 2.0732 × 103. These were

computed using a cell-by-cell adaptive mesh refinement (AMR) code [5] with 4 grid levels for the lower

resolution calculation and 5 levels for the higher one. As one would expect, the large Peclet number

for microbial diffusion means that the shock structure is very thin and is only just resolved in the higher

resolution calculation. The entire wave is also very thin because of the large Damköhler number for

microbial growth. If one translates this back into physical units, then the wave thickness is ≃ 0.05 cm

and its speed is 2.76× 10−5 cm s−1.

7 Realistic wave in a petri dish

Having established that the numerical method works well in one dimension, we now consider a circular

wave, such as the ones that are observed in laboratory experiments in Petri dishes. The initial conditions

were c = 1, b = Y in 0 ≤ r ≤ 0.001, 0 elsewhere. The size of the domain is appropriate for a 3
inch Petri dish. This was an AMR calculation with 6 grid levels giving with a minimum mesh spacing

of 12.8 × 10−6. At the final time the filling factor of the finest grid was 0.0023, which means that the

calculation is extremely efficient. It would clearly be extremely expensive to carry out such a calculation

with a uniform grid.

Figure 3 shows the wave speed as a function of time. It is clear that the wave takes a while to accelerate

and even at later times, there is a curvature effect. Nevertheless, the final speed is quite close to the one

dimensional value.
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Figure 2: High (line) and low (markers) numerical solution for a realistic one dimensional chemo-tactic

wave.

8 Groundwater pollution

It can be seen that it is quite difficult to model a wave even on the scale of a Petri dish. In ground-

water problems, the polluted region may have a scale of many kilometres, which means that it is quite

impossible to model the real wave, even with AMR.

Since the wave is one-dimensional, one could use a one dimensional calculation to get the wave speed

and then use a level set method. The alternative is to use the simple model with an increased wave

thickness, combined with AMR.

To do this, all we have to do is to multiply the chemo-tactic term by a factor, α. We then have

wave speed = (αDg)
1/2, wave thickness = (α/Dg)

1/2.

Now choose α, Dg to get desired thickness and correct wave speed. The only restriction is that the

thickness of the wave should be sufficiently small compared to the scale of the polluted region for

curvature effects to be neglible.

9 Conclusion

We have shown that it is possible to construct an efficient upwind scheme to model chemo-taxis, but

that even chemo-tactic waves on the scale of Petri dishes require very high resolution. AMR is an

effective way of doing this, but even so, it is not possible to model the real wave in polluted groundwater.

However, it is possible to construct a simple model that propagates the wave at the correct speed. In this

simple model the wave thickness is artificially increased, but the use of AMR makes it possible to keep

its thickness small compared to the overall scale of the polluted region.

In the absence of diffusion, the chemo-tactic wave has much in common with detonation in that there is a

shock at the leading edge and a sonic point in the wave structure. There are, however, some differences:
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Figure 3: Numerical wave speed for the circular chemo-tactic wave (markers). The line shows the one

dimensional speed.

there is no singularity at the sonic point, the reaction rate does not vanish there and the downstream state

can affect the wave in the presence of diffusion.
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