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1 Summary

Nonlinear, transverse-mode, combustion instability ianeed via a two-time-variable amplitude-
perturbation expansion![1]. Following an established ess¢ a two-dimensional, unsteady chamber-
wave-dynamics model [2] is used where the three-dimenkiemaations are integrated over the axial
direction. Nonlinear, transverse-wave oscillations m¢hicular combustion chamber are examined with
the primary flow in the axial direction. The analysis is firehgralized to match a variety of relevant
injection and combustion mechanisms. Then, a specific ebeamith liquid-propellant-rocket-motor
co-axial injectors is used to demonstrate the matchingga®between wave dynamics and the injection
and combustion mechanisms. Turbulent mixing of gaseougefiemts with co-axial injection and a
multi-orifice, short thrust nozzle are considered, prodga@ characteristic time for mixing and a time
lag in the energy release rate relative to pressure. Thdagpmbustion process and wave dynamics
are calculated for a multi-injector chamber. In particuthe first-tangential mode is examined. Two
coupled first-order ordinary differential equations (Op&® developed and solved to predict amplitude
and phase-angle variations in the slow time for the majoerdighction component of the waveform.
Limit cycles and transient behaviors are resolved. Noaliigggering can occur in certain operational
domains; above a critical initial amplitude, the amplitigtews; otherwise, it decays with time. The
reduction to ODEs provides a foundation for future work oftiveccontrols.

2 Analytical Approach

Itis useful to cast the two-dimensional wave dynamics eqnai cylindrical polar coordinates because
of the combustion chamber shapeand# represent radial distance from the chamber centerline and
azimuthal position, respectively. The velocity composemteu, andug. [2] Two time scales will be
introduced|[1]; a fast time scale= wt on which the oscillations occur and a slow time scale ot on
which amplitudes and phase slowly changes the angular frequency of the oscillation anis a small
positive quantity that goes to zero as the oscillation atgé goes to zero. Dependent variables become
functions of both variables: e.qu(z, 7,7, 60). Then,0p/dt = wdp/dz + odp/O7. The non-dimensional
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wave dynamics equation becomes
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whereB is a non-dimensional positive constant generated by thel@bnundary condition. Iti®© (M)
with the steady-state chamber mean Mach nundlber. < 1. The nonlinear acoustic terms are given as
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The quantityE(z, T, r,0) represents the non-dimensional energy release rate pevalaime due to
combustion and can be expected to go to zerdlas» 0. FurthermorepE /ot — 0 ase — 0 and / or
asM — 0.

The non-dimensional momentum equations become
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The non-dimensional wall boundary conditions are
up(z,7,1,0) =0 %(z,f,l,e):p%uz 5)

An implicit constraint is the solution must remain finite agut any singularity.

A perturbation series expansion is assumedill be the perturbation parameter which is a measure of
oscillation amplitude. We take

b= 1+ 5]91('2»7'7 T, 9) + €2p2(25,’7', T79) + €3p3(z77—7 T, 9) + (64)
(%)

0
up = eup1(2,7,7,0) + 2upa(z, 7,7, 0) + 3up (2, 7,7, 0) + O(e?
O

up = eupa(z,7,7,0) + 52u972(z,7', r,6) + E3u973(z,7', r,0) + O(e*
E= 1+¢eEi(z,7,7,0)+0(?) ; w=uwy+ews + 2wy + O(e3)
pr) = 1+elpy + 2 [Tpy + 52 p3] + O() (6)

The zeroeth-order solutions are the steady-state sofitibns, the non-dimensiong = 1 andu, o =
ugo = 0. It will be shown thatv; = 0,0 = M = £2. For simplicity, those values will be taken now
and proven later.

Now, we substitute the series into Equatidds (1) througtals) separate according to powerg of
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An infinite number of modes are possible. We select here thyeogenmon first-tangential spinning (i.e.,
travelling in the azimuthal direction). The first-order veaaguation fop; is the classical homogeneous
wave equation, yielding the well known results:

A dJy

p1 = A(7)J1(s11m)cos(z — 0+ (7)) 5 upp = —Eﬁsin(z —0+1) ;

A
ugy = Jicos(z —0+1) ; wg = s11 = 1.8413 @)
ys11T

Jn, A, andy) are the Bessel function of first kind and order, slowly varying amplitude, and slowly
varying phase angle.

The second-order quantipy is governed by a linear non-homogeneous wave equation \itefercing
function is known based on the first-order solution. Theifagdunction is

= —A? Qigr) — A? Qigr) cos(2[z — 0 +¢]) — A Qz:z(?“) sin(2[z — 6 + )

whereQ)g, ()2, and(Q)- are functions of squares and products of Bessel functiomprédvent a resonant
singularity, part of the forcing function has been forceddoo value by setting; = 0. For this solution,
we now have the sum of three particular solutions:

po = A2Fy(r) + A% Fy(r)cos(2[z — 0 + ) + A2y (r)sin(2[z — 6 + ¢]) (8)
where the first particular solutiof(r) is
J2o1 [Jg 2.J1.J ] ,

Fo=K+ =+ +— (9)
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The constanis is determined because the volume integral of density yigldssame mass as given in
steady-state operation. Thus, we have
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The second particular solutidf, is given as

Falr) = Yatasur) [ SR A= — o) [ S
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The first term has a singularity at= 0 introduced througlYs, the Bessel function of the second kind.
However, the product with multiplying integral will removke singularity. In the second term, the
product also removes a singular behavior.

The remaining second-order particular solutiéi,( is

Fou(r) = 2ms2, [Yé(%nr) /0" J2(25117")Qas (1) L o (2s117) /07" Y2(2sm’)st(r’)dT/] (12)

T‘/ T‘/

Solution forugy requires integration over z. The “constant” of integrat{@atually allowed to be a
function of ) is set to zero by the condition of zero vorticity (zero clation) to this order of the
perturbation series. The solutions fgr andug, become

Upy = A2Go(r)sin(2[z — 0 + 1b]) + A2Gas(r)cos(2[z — 0 + ])

_ 1 JiJ 511J2 dF. _ 1 dbb,
Go(r) = 29252, [1—2 o % _’Yslld_f] P Gas(r) = 2ys11 df (13)

uge = A2Ho(r)cos(2[z — 0 + ¢]) + A2 Has(r)sin(2[z — 0 + 9])
Hy(r) =3[R+ iZE 4 2] 5 W) = R (14)

— ysur YS11T — vs11T
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3 Solutions for Amplitude and Phase

We obtain the two following differential equations by sedtitwo portions of the third-order forcing
function to be zero in order to avoid resonant singularities

dA

E—:kﬂ+bﬁ; B = 2wy — kg — ks A? (15)
=
1
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ki=(—-1)E.,; —B=(y— l)fo ()i (sur)rdr - B
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The sum ofE.. ; (r) multiplied a cosine function of — 6 + v plus E  (r) multiplied a sine function of

z — 0 + 1 gives the first perturbation of the energy release rate peévalume. ¢;(r) andq;(r) are
determined from the forcing function of the third-order waquation and depend on triple products of
known Bessel functions. Analytical solutions can be foumdiiese two first-order ordinary differential
equations. With no loss of generality, = Ay andy = 0 for the initial values. For the first equation,
the integrated solution becomes

A(r)
Ap

k
:u+é%wmﬂ-

~1/2
iy (16)
ky

Consider first the cases wheétgandks have identical signs. ; < 0 andk, < 0 (Case 1), the solution
for A goes to zero value as — ~o . If insteadk; > 0 andky > 0 (Case Il), the solution foA goes

to infinity in a finite time. Under this condition of unconditial instability in Case Il with botft; and

ko having positive values, a stable limit cycle is expectedractice. However, the perturbation series
has not yet captured sufficiently high powerssab predict the stable limit cycle. So, the solution is
artificially predicted to grow to infinite amplitude in a figitime; rather, it is expected to grow to a finite
stable amplitude in an infinite time if higher order analysere applied.

If k1 andks have opposite signs, a limit cycle clearly existsdat Ax = /—ky /ko with zero-valued
time derivative. For a more informative display, we may ligsvEquation[(Ib) as

A(T)

AT _ [y (A Ag o) 2
AO n Ax

2\ —2k1T 0
e M+ () (17)
If k1 < 0,ky > 0,andAg < Ax (Case llla), the solution fod decays to zero value as— oo ; while
the solution forA grows to infinity in a finite time ifk; < 0, k2 > 0, and Ag > Ax (Case llIb). (Note
that mathematically in either Case Illa or llIb, the value4xfis approached as — —oc.) In Case Il
here, the limit cycle atdx is unstable; a stable limit cycle should exist at a higheueailf A but the
truncated perturbation series does not reveal it. So, dgaipredicted growth to infinity in a finite time
is artificial; rather, growth in an infinite time to a finite bta value is expected.

If k1 > 0,ky < 0,andAy < Ax (Case IVa), the solution grows with — Ax asT — co andA — 0 as
T— —o0. If ky >0,k < 0,andAy > Ax (Case IVb), the solution decays with — Ax asT — oc.
In Case IV here, the limit cycle atx is stable.
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k1 andky, must have opposite signs to predict a limit cyclek{fwere positive (negative) with a nega-
tive (positive) ks, a stable (unstable) limit cycle is predicted. The posikiyavith negativek, implies
unconditional instability, any small perturbation growssbme stable limit cycle. The reversed signs
indicate a bi-stable behavior with conditional stabilitypwever, the expected stable limit cycle at an am-
plitude greater than the unstable limit-cycle amplitutleis not predicted. Presumably, the perturbation
analysis must be carried to higher order for that prediction

If k1 andk- are both positive, any disturbance grows indicating unitimmel instability without pre-
diction of a required stable limit-cycle. Again, we presumgher-order analysis is required herek|f
and ko were both negative, any disturbance decays indicatingnditional stability within the limits

of our analysis; although a higher-order solution coulddaté a bi-stable character. For example, the
addition of anO(A®) term with a positive coefficient to the right-side of Equat{@3) for A would lead

to prediction of an unstable limit cycle.

wy Is the frequency perturbation that applies in the limit eyslherey ceases to vary with time; thus,
its value can be determined to be = — (k3 + k4 A%2)/2. Note thatu, can be simply ignored where a
limit cycle is not found.

The second equation ib_(15) is readily solved by integratiba simple quadrature after substitution for
A using Equation(16).

Y=k A% T+ gitin {(%)262’“”] = kA>T — kg AT+ K [(%)2} = fain {(%)2]

A= Ax = — giin [(%)2] (18)

These results provide useful information for the nonlinesgimes where amplitude is not too large.
As noted, higher order expansion terms might be needed ie sases; however, the pattern has been
identified of a polynomial with differences in consecutieens beingD(A?).

4 Analysis of Mixing and Combustion with N Co-axial Injectors

We consider the specific example &f co-axial injectors (oxygen surrounded by fuel) with indival
flames at each injector. Only the linearized perturbatioiissygpear in matching the wave dynamics to
third order. The Oseen approximation and use of Green'stiumg allow an analytical solution. The
definitions are given that

Vo= 22 (1= o o 1 o] Y B costona/0) (o)
2 =t [ ] B im0 vl @)

The two integrals with the sinusoidal oscillations of a kiragic wave with short wavelength will have
lower values than the first integral. The steady-state flaengperaturel’s and the functionV; are
determined analytically.

We must redistribute the burning rates for all injectors in an eigenfunction series. We are most
interested in the Fourier sine and cosine functions withftmelamental frequency. Some convenient
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definitions are

o = 027r fol 3(r—ri,0—0;)J1(s117;)cos0; J1(s117)cos0 rdrdd) J%(sllm)cos20i
v 7w [y J2(s11r) rdr T w [T (suur) rr
b, = fo% fol §(r—ri,0—0;)J1(s117)sin0; Ji(s117)sind rdrdd — JZ(s117;)sin20;
) - T 2 e T3
7rfO J3(s117) rdr 7rf0 J3(s117m) rdr
J?
A; =q; +b = —fL 2 (s1174) (20)

7Tf01 J12(511r) rdr

The key Fourier coefficients in the expansion, account fatrdoutions from all/V injectors, are

Vs [ 1 Vi (&
P 23 . B =4 4
Ec,l - 7 <ZA2> ) Es,l - M 2 <ZA2> (21)
i=1 =1
After integration to produce components in a proper FotBiessel series, we have a useful measure of
the fluctuation in the time rate of energy per unit volume.

These results may now be used for substitution in Equatibist¢ evaluate the important constants.

5 Concluding Remarks

The theory predicts that the limit-cycle mean-to-peak disienal pressure amplitude scales roughly
aSpSteady_State/\/M assuming a weak dependence of the combustion on the meaM#oty number
and a small influence of Mach number dependence appearioggtnitheB term. The Mach number
dependence of the amplitude comes primarily fromThe Mach number at the nozzle entrance scales
roughly as throat ared, for M << 1 while steady-state chamber pressure scales as the resijfoc
A;. Therefore, one can vary; at constant mass flow and show that dimensional pressuretadepis
proportional toA, 32, Thereby, for example, a thirty per cent change in nozzleatharea produces

a nearly fifty percent change in the mean-to-peak limit-€yaplitude. The dimensional frequency
perturbation at the limit cycle, should vary witii (or A;).

Here, the waveform consists of a basic resonant mode oflatgmil with the superposition of higher
harmonics on a fundamental mode. The method could be usedHer tangential, radial, and mixed
radial-tangential modes, including both standing andelfeng modes. Situations where more than one
fundamental mode appear with non-integer frequency ratmgd produce "wobbly” waveforms where
the solutions cannot be expressed in terms of one frequéemeygy transfer between these fundamental
resonant modes would occur and sub-harmonics might be peddu
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