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1 Summary

Nonlinear, transverse-mode, combustion instability is examined via a two-time-variable amplitude-
perturbation expansion [1]. Following an established process, a two-dimensional, unsteady chamber-
wave-dynamics model [2] is used where the three-dimensional equations are integrated over the axial
direction. Nonlinear, transverse-wave oscillations in the circular combustion chamber are examined with
the primary flow in the axial direction. The analysis is first generalized to match a variety of relevant
injection and combustion mechanisms. Then, a specific example with liquid-propellant-rocket-motor
co-axial injectors is used to demonstrate the matching process between wave dynamics and the injection
and combustion mechanisms. Turbulent mixing of gaseous propellants with co-axial injection and a
multi-orifice, short thrust nozzle are considered, producing a characteristic time for mixing and a time
lag in the energy release rate relative to pressure. The coupled combustion process and wave dynamics
are calculated for a multi-injector chamber. In particular, the first-tangential mode is examined. Two
coupled first-order ordinary differential equations (ODEs) are developed and solved to predict amplitude
and phase-angle variations in the slow time for the major eigenfunction component of the waveform.
Limit cycles and transient behaviors are resolved. Nonlinear triggering can occur in certain operational
domains; above a critical initial amplitude, the amplitudegrows; otherwise, it decays with time. The
reduction to ODEs provides a foundation for future work on active controls.

2 Analytical Approach

It is useful to cast the two-dimensional wave dynamics equation in cylindrical polar coordinates because
of the combustion chamber shape.r andθ represent radial distance from the chamber centerline and
azimuthal position, respectively. The velocity components areur anduθ. [2] Two time scales will be
introduced [1]; a fast time scalez = ωt on which the oscillations occur and a slow time scaleτ = σt on
which amplitudes and phase slowly change.ω is the angular frequency of the oscillation andσ is a small
positive quantity that goes to zero as the oscillation amplitude goes to zero. Dependent variables become
functions of both variables: e.g.,p(z, τ, r, θ). Then,∂p/∂t = ω∂p/∂z+σ∂p/∂τ. The non-dimensional
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wave dynamics equation becomes
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whereB is a non-dimensional positive constant generated by the nozzle boundary condition. It isO(M)
with the steady-state chamber mean Mach numberM << 1. The nonlinear acoustic terms are given as
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The quantityE(z, τ, r, θ) represents the non-dimensional energy release rate per unit volume due to
combustion and can be expected to go to zero asM → 0. Furthermore,∂E/∂t → 0 asε → 0 and / or
asM → 0.

The non-dimensional momentum equations become
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The non-dimensional wall boundary conditions are

ur(z, τ, 1, θ) = 0 ;
∂p

∂r
(z, τ, 1, θ) = p

1

γ u2θ (5)

An implicit constraint is the solution must remain finite without any singularity.

A perturbation series expansion is assumed.ε will be the perturbation parameter which is a measure of
oscillation amplitude. We take

p = 1 + εp1(z, τ, r, θ) + ε2p2(z, τ, r, θ) + ε3p3(z, τ, r, θ) +O(ε4)

ur = εur,1(z, τ, r, θ) + ε2ur,2(z, τ, r, θ) + ε3ur,3(z, τ, r, θ) +O(ε4)

uθ = εuθ,1(z, τ, r, θ) + ε2uθ,2(z, τ, r, θ) + ε3uθ,3(z, τ, r, θ) +O(ε4)

E = 1 + εE1(z, τ, r, θ) +O(ε2) ; ω = ω0 + εω1 + ε2ω2 +O(ε3)

pΓ(γ) = 1 + εΓp1 + ε2[Γp2 +
Γ(Γ−1)

2 p21] +O(ε3) (6)

The zeroeth-order solutions are the steady-state solutions; thus, the non-dimensionalp0 = 1 andur,0 =
uθ,0 = 0. It will be shown thatω1 = 0, σ = M = ε2. For simplicity, those values will be taken now
and proven later.

Now, we substitute the series into Equations (1) through (5)and separate according to powers ofε.
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An infinite number of modes are possible. We select here the very common first-tangential spinning (i.e.,
travelling in the azimuthal direction). The first-order wave equation forp1 is the classical homogeneous
wave equation, yielding the well known results:

p1 = A(τ)J1(s11r)cos(z − θ + ψ(τ)) ; ur1 = −
A

γs11

dJ1
dr

sin(z − θ + ψ) ;

uθ1 =
A

γs11r
J1cos(z − θ + ψ) ; ω0 = s11 = 1.8413 (7)

Jn, A, andψ are the Bessel function of first kind andnth order, slowly varying amplitude, and slowly
varying phase angle.

The second-order quantityp2 is governed by a linear non-homogeneous wave equation wherethe forcing
function is known based on the first-order solution. The forcing function is

= −A2Q0(r)
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whereQ0, Q2, andQ2s are functions of squares and products of Bessel functions. To prevent a resonant
singularity, part of the forcing function has been forced tozero value by settingω1 = 0. For this solution,
we now have the sum of three particular solutions:
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The constantK is determined because the volume integral of density yieldsthe same mass as given in
steady-state operation. Thus, we have
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The second particular solutionF2 is given as
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The first term has a singularity atr = 0 introduced throughY2, the Bessel function of the second kind.
However, the product with multiplying integral will removethe singularity. In the second term, the
product also removes a singular behavior.

The remaining second-order particular solution (F2s) is
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Solution foruθ2 requires integration over z. The “constant” of integration(actually allowed to be a
function of r) is set to zero by the condition of zero vorticity (zero circulation) to this order of the
perturbation series. The solutions forur2 anduθ2 become

ur2 = A2G2(r)sin(2[z − θ + ψ]) +A2G2s(r)cos(2[z − θ + ψ])
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3 Solutions for Amplitude and Phase

We obtain the two following differential equations by setting two portions of the third-order forcing
function to be zero in order to avoid resonant singularities:
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k3 ≡ (γ − 1)Ēs,1 = (γ − 1)

∫ 1
0 Es,1(r)J1(s11r)rdr
∫ 1
0 J

2
1 (s11r)rdr

; k4 ≡

∫ 1
0 q1(r)J1(s11r)rdr

s11
∫ 1
0 J

2
1 (s11r)rdr

The sum ofEc,1(r) multiplied a cosine function ofz − θ + ψ plusEs,1(r) multiplied a sine function of
z − θ + ψ gives the first perturbation of the energy release rate per unit volume. q1(r) andq1s(r) are
determined from the forcing function of the third-order wave equation and depend on triple products of
known Bessel functions. Analytical solutions can be found for these two first-order ordinary differential
equations. With no loss of generality,A = A0 andψ = 0 for the initial values. For the first equation,
the integrated solution becomes
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Consider first the cases wherek1 andk2 have identical signs. Ifk1 < 0 andk2 < 0 (Case I), the solution
for A goes to zero value asτ → ∞ . If insteadk1 > 0 andk2 > 0 (Case II), the solution forA goes
to infinity in a finite time. Under this condition of unconditional instability in Case II with bothk1 and
k2 having positive values, a stable limit cycle is expected in practice. However, the perturbation series
has not yet captured sufficiently high powers ofε to predict the stable limit cycle. So, the solution is
artificially predicted to grow to infinite amplitude in a finite time; rather, it is expected to grow to a finite
stable amplitude in an infinite time if higher order analysiswere applied.

If k1 andk2 have opposite signs, a limit cycle clearly exists atA = A∗ ≡
√

−k1/k2 with zero-valued
time derivative. For a more informative display, we may rewrite Equation (16) as
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]
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If k1 < 0, k2 > 0, andA0 < A∗ (Case IIIa), the solution forA decays to zero value asτ → ∞ ; while
the solution forA grows to infinity in a finite time ifk1 < 0, k2 > 0, andA0 > A∗ (Case IIIb). (Note
that mathematically in either Case IIIa or IIIb, the value ofA∗ is approached asτ → −∞.) In Case III
here, the limit cycle atA∗ is unstable; a stable limit cycle should exist at a higher value ofA but the
truncated perturbation series does not reveal it. So, againthe predicted growth to infinity in a finite time
is artificial; rather, growth in an infinite time to a finite stable value is expected.

If k1 > 0, k2 < 0, andA0 < A∗ (Case IVa), the solution grows withA→ A∗ asτ → ∞ andA→ 0 as
τ → −∞. If k1 > 0, k2 < 0, andA0 > A∗ (Case IVb), the solution decays withA → A∗ asτ → ∞.
In Case IV here, the limit cycle atA∗ is stable.
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k1 andk2 must have opposite signs to predict a limit cycle. Ifk1 were positive (negative) with a nega-
tive (positive)k2, a stable (unstable) limit cycle is predicted. The positivek1 with negativek2 implies
unconditional instability, any small perturbation grows to some stable limit cycle. The reversed signs
indicate a bi-stable behavior with conditional stability;however, the expected stable limit cycle at an am-
plitude greater than the unstable limit-cycle amplitudeA∗ is not predicted. Presumably, the perturbation
analysis must be carried to higher order for that prediction.

If k1 andk2 are both positive, any disturbance grows indicating unconditional instability without pre-
diction of a required stable limit-cycle. Again, we presumehigher-order analysis is required here. Ifk1
andk2 were both negative, any disturbance decays indicating unconditional stability within the limits
of our analysis; although a higher-order solution could indicate a bi-stable character. For example, the
addition of anO(A5) term with a positive coefficient to the right-side of Equation (15) forA would lead
to prediction of an unstable limit cycle.

ω2 is the frequency perturbation that applies in the limit cycle whereψ ceases to vary with time; thus,
its value can be determined to beω2 = −(k3 + k4A∗2)/2. Note thatω2 can be simply ignored where a
limit cycle is not found.

The second equation in (15) is readily solved by integrationof a simple quadrature after substitution for
A using Equation (16).
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(18)

These results provide useful information for the nonlinearregimes where amplitude is not too large.
As noted, higher order expansion terms might be needed in some cases; however, the pattern has been
identified of a polynomial with differences in consecutive terms beingO(A2).

4 Analysis of Mixing and Combustion withN Co-axial Injectors

We consider the specific example ofN co-axial injectors (oxygen surrounded by fuel) with individual
flames at each injector. Only the linearized perturbations will appear in matching the wave dynamics to
third order. The Oseen approximation and use of Green’s functions allow an analytical solution. The
definitions are given that

V3 ≡ γ−1
γ
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[
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T̄f (x)

]
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)
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]
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0
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The two integrals with the sinusoidal oscillations of a kinematic wave with short wavelength will have
lower values than the first integral. The steady-state flame temperatureTf and the functionV2 are
determined analytically.

We must redistribute the burning rates for allN injectors in an eigenfunction series. We are most
interested in the Fourier sine and cosine functions with thefundamental frequency. Some convenient
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definitions are
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The key Fourier coefficients in the expansion, account for contributions from allN injectors, are

Ēc,1 =
V3
2

( N
∑

i=1

Ai

)

; Ēs,1 =
1

M
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2

( N
∑

i=1
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(21)

After integration to produce components in a proper Fourier-Bessel series, we have a useful measure of
the fluctuation in the time rate of energy per unit volume.

These results may now be used for substitution in Equations (15) to evaluate the important constants.

5 Concluding Remarks

The theory predicts that the limit-cycle mean-to-peak dimensional pressure amplitude scales roughly
aspsteady−state/

√
M assuming a weak dependence of the combustion on the mean-flowMach number

and a small influence of Mach number dependence appearing through theB term. The Mach number
dependence of the amplitude comes primarily fromk2. The Mach number at the nozzle entrance scales
roughly as throat areaAt for M << 1 while steady-state chamber pressure scales as the reciprocal of
At. Therefore, one can varyAt at constant mass flow and show that dimensional pressure amplitude is
proportional toA−3/2

t . Thereby, for example, a thirty per cent change in nozzle throat area produces
a nearly fifty percent change in the mean-to-peak limit-cycle amplitude. The dimensional frequency
perturbation at the limit cycle, should vary withM (orAt).

Here, the waveform consists of a basic resonant mode of oscillation with the superposition of higher
harmonics on a fundamental mode. The method could be used forother tangential, radial, and mixed
radial-tangential modes, including both standing and travelling modes. Situations where more than one
fundamental mode appear with non-integer frequency ratioswould produce ”wobbly” waveforms where
the solutions cannot be expressed in terms of one frequency.Energy transfer between these fundamental
resonant modes would occur and sub-harmonics might be produced.
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