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1 INTRODUCTION 

The turbulence at the flame front of a propagating premixed flame induces its acceleration.  Since the 

intensity of a gas explosion depends mainly on the rate of pressure rise, which is caused by flame 

propagation, the prediction of turbulence development is indispensable for the evaluation of gas 

explosion effects or the assessment of gas explosion hazards.   Many studies have been performed on 

the growth of the flame front turbulence at premixed flame fronts.  Most of these studies are based on 

the concepts of the flame induced turbulence and/or flame-turbulent flow interaction.  The results of 

studies[1-4]  seem to indicate that the early stage growth of flame front turbulence is attributable 

mainly to interaction of flame front with an acoustic wave, or acceleration of gas flow normal to it.   

There are two mechanisms for the intrinsic instability of premixed flame, hydrodynamic and 

thermodiffusive ones[5-10]. The effect of hydrodynamic instability is counter-balanced by 

thermodiffusive instability that have a stabilizing effect that becomes stronger as the wave length of 

the disturbances is small.  Computer simulations[11,12] of inviscid flow with the initial flame 

configuration seen in experiment lead to the formation of cusps and eventually hooks in convex parts 

of the flame. A model considering these instabilities is needed to determine the critical wavelength of 

the disturbance, the initial flame configuration.  Flame front turbulence appears on the flame fronts 

propagating in orifice sections or periodically accelerating and decelerating flows where the flow of 

premixed mixture is not parallel[1-4].  To understand the initial turbulence inception, the flow field 

turbulence in premixed mixture needs to be examined.  In a divergent flow, non-uniform flow appears 

above a critical velocity.  As flame propagates in an orifice section, flame propagates in a converging 

and diverging flow.  If the intensities of diverging flow were made very large as accelerated by a 

pressure wave in experiments[1-4,13], gas flow turbulence would appear due to the viscous stress of 

the fluid[14].  In purely divergent flow, viscous forces do not decrease indefinitely in relative 

magnitude as the Reynolds number tends to infinity and at no value of the Reynolds number are 

viscous forces negligible[14]. In purely divergent flow, vorticity is not convected towards the walls 

nor the vorticity generated at the wall is not permanently confined to a layer adjoining the wall whose 

thickness tends to zero as the Reynolds number tends to infinity[14].  In this study, a simple 

simulation of viscous flow was carried out to determine the flow field observed in experimental 

studies[1-4].  

2 FLOW FIELD NEAR FLAME FRONT MODIFIED BY A FLOW 

1) DIVERGENCE ANGLE OF GENERATED FLOW 
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Chemical reaction at flame front generates heat and combustion product from premixed mixture.  

Thermal expansion of gas generates a flow in premixed mixture.  Assuming the angle 𝛼0 of cylindrical 

flame front, the flow in premixed mixture with the potential-flow model has a uniform velocity of |𝑽𝒔| 
as shown in figure 1.  If this cylindrical flame front is propagating in the flow of velocity 𝑼, the 

combined flow velocity is 𝑽𝒔 + 𝑼 and the angle of the combined flow from the pseudo point source 

becomes 𝛼𝑃. Assuming radius of the flame front is 𝑟0, the position at the edge of frame front is 

 

                                                                            ( 𝑟0 cos 𝛼0 , 𝑟0sin 𝛼0)                                              (1)   
  

Assuming the source strength at (0, 0) is I, the flow velocity, 𝑽𝒔 at the edge of frame front is 

                                                                         ( 
𝐼

2𝜋𝑟0
cos 𝛼0 ,

𝐼

2𝜋𝑟0
sin 𝛼0)                                                          (2)      

The combined flow velocity, 𝑽𝒔  + 𝑼 at the edge of flame front is 

                                                              ( 
𝐼

2𝜋𝑟0
cos 𝛼0  + 𝑈,

𝐼

2𝜋𝑟0
sin 𝛼0)                                                      (3) 

The radius, 𝑟𝑝 of the combined flow from the pseudo point source is  |

𝐼

2𝜋𝑟0
+|𝑼|

𝐼

2𝜋𝑟0

| 𝑟0  for  𝛼0  ≪ 1. 

                                    tan 𝛼𝑝  =  
𝑟0  sin 𝛼0

|

𝐼
2𝜋𝑟0

+ |𝑼|

𝐼
2𝜋𝑟0

| 𝑟0

 =  |

𝐼
2𝜋𝑟0

𝐼
2𝜋𝑟0

+ |𝑼|
| sin 𝛼0                                           (4) 

For  𝛼0  ≪ 1, 

                                                         𝛼𝑝  =  

𝐼
2𝜋𝑟0

|
𝐼

2𝜋𝑟0
+ |𝑼||

𝛼0                                                                          (5) 

 

   Figure 1 Flow from the pseudo point source 
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The flow velocity, |𝑽𝒔|  at the edge of flame increases from zero to the burned gas velocity, 𝑆𝑏 

depending on the flow condition.  The combined flow velocity,   |𝑽𝒔  + 𝑼 | equals flame propagation 

velocity, 𝑽𝒇 subtracted by the laminar burning velocity 𝑆𝑢.  As shown Eq.(4), the flame is 

cylindrical where 𝛼0  ≪ 1.  This paper investigates the flame front behavior where 𝛼0  ≪ 1. 

 

2) POSSIBLE FLOW OF EXPANDING VISCOUS FLUID 

Assuming pseudo steady state after acceleration by the pressure wave, the continuity equation is 

formulated for a system with constant density.   It is well known that the flow of a viscous 

incompressible fluid between two plane walls tilted by an angle of 𝛼 with respect to each other is 

governed by the exact solution by Jeffery[15] and Hamel[16].  In cylindrical coordinates ( 𝑟, 𝜃, 𝑧 ), the 

equations for the velocity components ( 𝑢, 𝑣, 𝑤 ) for the steady flow of an incompressible fluid are:   

continuity[17], 

              
1

𝑟

∂(𝑟𝑢)

∂𝑟
 +

1

𝑟
 
𝜕𝑣

𝜕𝜃
 +

𝜕𝑤

𝜕𝑧
= 0                                                                                            (6) 

momentum, 

                         𝑢
∂𝑢

∂𝑟
 +  

𝑣

𝑟

𝜕𝑢

𝜕𝜃
 −  

𝑣2

𝑟
 + 𝑤

𝜕𝑢

𝜕𝑧
 =  − 

1

𝜌

𝜕𝑝

𝜕𝑟
 +  𝜐 (∇2𝑢 −  

𝑢

𝑟2  −  
2

𝑟2

𝜕𝑣

𝜕𝜃
)                           (7)        

              𝑢
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∂𝑟
 + 

𝑣

𝑟

𝜕𝑣

𝜕𝜃
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𝑟
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 =  − 

1

𝜌𝑟

𝜕𝑝

𝜕𝜃
 +  𝜐 (∇2𝑣 − 

𝑣

𝑟2
 + 

2

𝑟2

𝜕𝑢

𝜕𝜃
)                (8) 

               𝑢
∂𝑤

∂𝑟
 +  

𝑣

𝑟

𝜕𝑤

𝜕𝜃
 + 𝑤

𝜕𝑤
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 =  − 

1

𝜌

𝜕𝑝

𝜕𝑧
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where 

                       ∇2 =  
𝜕2

𝜕𝑟2
 +  

1

𝑟

𝜕

𝜕𝑟
 +  

1

𝑟2

𝜕2

𝜕𝜃2
 + 

𝜕2

𝜕𝑧2
                                                                                              

p and 𝜈 denote the pressure and kinematic viscosity, respectively. 

Assuming  𝑢 = 𝑢 (𝑟, 𝜃), 𝑣 = 0, 𝑤 = 0, 

                                                               𝑢 =
𝐹(𝜃)

𝑟
                                                                                      (10) 

                                                −
𝐹(𝜃)2

𝑟3
 =  −

1

𝜌

𝜕𝑃

𝜕𝑟
 + 

𝜈

𝑟3

𝜕2𝐹(𝜃)

𝜕𝜃2
                                                        (11) 

                                                              0 =  − 
1

𝜌𝑟

𝜕𝑃

𝜕𝜃
 +  𝜈

2

𝑟3
 
𝜕𝐹(𝜃)

𝜕𝜃
                                                   (12) 

A partial differentiation of Eq. (12) with respect to 𝑟 gives 
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                          − 
1

𝜌

∂

∂𝑟
(

𝜕𝑃

𝜕𝜃
) −  𝜈

4

𝑟3

𝜕𝐹(𝜃)

𝜕𝜃
 =   − 

1

𝜌

∂

∂𝜃
(

𝜕𝑃

𝜕𝑟
) −  𝜈

4

𝑟3
 
𝜕𝐹(𝜃)

𝜕𝜃
                             (13) 

where 

    
∂

∂𝑟
(

𝜕𝑃

𝜕𝜃
) =  

∂

∂𝜃
(

𝜕𝑃

𝜕𝑟
)  

A partial differentiation of Eq. (11) with respect to 𝜃  and substituting Eq. (13) give 

                                     2 𝐹(𝜃)
𝜕𝐹(𝜃)

𝜕𝜃
 + 4𝜈

𝜕𝐹(𝜃)

𝜕𝜃
 + 𝜈

𝜕3𝐹(𝜃)

𝜕𝜃3
 = 0                                                 (14) 

                                                               𝜃 =  𝛼𝜂                                                                                            (15) 

                                                          𝐹(𝜃) =  𝐹0 𝑓                                                                                        (16) 

where 𝜂 and 𝑓 denote the non-dimensional angle and velocity, respectively. 

                                              2𝑅𝛼 𝑓 𝑓′  + 4𝛼2𝑓′  + 𝑓′′′  = 0                                                                      (17)   

where 

𝑅 =  
α𝐹0

𝜈
                                                                           

with the boundary conditions, 

                   𝜂 = 1,          𝑓 = 0                                                                 (18)   

                  𝜂 = −1,      𝑓 = 0                                                                  (19)   

         𝜂 = 0,          𝑓 = 1                                                                 (20)                                                      

                   𝜂 = 0,         𝑓′ = 0                                                                (21)                                                              

                   𝜂 = 0,         𝑓′′ = 𝐹2                                                             (22) 

Thus, the partial differential equations of continuity and momentum have been reduced to an ordinary 

nonlinear differential equation of the third order whose solutions must satisfy in the physical problem 

under consideration two boundary conditions of vanishing velocity at the walls[17]. 

3 RESULTS 

It is clear that the solution 𝑓 of Eq, (17) is given by an elliptic integral.   An evaluation is given by 

Hamel[16] in terms of the Weierstrassian functions[17].  Numerical integration of Eq. (17) from 𝜂 = 0 

to 𝜂 = 1 gives 𝑓′′, 𝑓′, 𝑓 with a range of 𝐹2  whose satisfy two boundary conditions of vanishing 

velocity at the walls[17].  Numerical integration was carried out with 30000 elements along 𝜂 axis.  

Figure 2 shows 𝑅 and 𝛼 those satisfy two boundary conditions of vanishing velocity at the walls 

for 𝐹2 >  −10000.  Radial expanding flows are R > 0.    
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Assuming  𝐹0 = |
𝐼

2𝜋𝑟0
+ |𝑼|| 𝑟𝑝  [m2

s⁄ ] , 𝜈 = 1.6 × 10−5  [m2

s⁄ ] , |
𝐼

2𝜋𝑟0
+ |𝑼|| = 2.7  [m

s⁄ ], 𝑟𝑝 =

1.0[m], 𝛼0 = 0.2  [rad], 

          𝑅 =  
𝛼𝑝𝐹0

𝜈
 =  

𝐼
2𝜋𝑟0

|
𝐼

2𝜋𝑟0
+ |𝑼||

𝛼0

|
𝐼

2𝜋𝑟0
+ |𝑼|| 𝑟𝑝

𝜈
=

𝛼0

𝜈
|

𝐼

2𝜋
+ |𝑼|𝑟0|                           (23)  

Figure 3 shows the obtained non-dimensional velocity 𝑓  from 𝜃 = 0 to 𝜃 = 𝛼 for 𝑅 = 33000.   Four 

flows are obtained for positive and negative velocity gradients at the walls.   The first minimum of 

non-dimensional velocity f appears near 𝜃 = 0.003.  The estimated scale of the flow turbulence on the 

flame of radius, 𝑟𝑝 =  1.0 m from the pseudo point source for the angle 2𝜃 = 0.006 is 2𝜃 𝑟𝑝= 6.0 mm, 

which agrees with the scale of flame turbulence observed in experiments[1,4].  As seen in Fig. 3, non-

dimensional velocity 𝑓 becomes negative that indicates premixed mixture flows into the burned gas 

side.   Flowing into the burned gas from premixed mixture could result in flame area increase. 

 

              Figure 2 F2 with 𝑅 and 𝛼                                           Figure 3 Non-dimensional velocity  

4 DISCUSSION 

The flow in premixed mixture is laminar along smooth flame front.  Due to thermal expansion of 

burned gas, the laminar flow becomes a radial flow.   The combined flow of this radial flow and the 

flow caused by pressure wave is another radial flow with large velocity and a small flow angle.  This 

combined flow is not purely expanding flow at large velocity.  A periodic flow appears in premixed 

mixture normal to the flame front.   With a given 𝑓′′ at 𝜂 = 0,  the periodic flow is possible with small 

angle 𝛼.  This small angle 𝛼 occurs when flame accelerates, or flame propagates in a long distance or a 

narrow channel.   If  𝑓′′ at 𝜂 = 0  becomes much smaller, periodic flows are possible with larger 

angle 𝛼.   The viscous stress determines the appearance of these periodic flows.   The viscous stress 

increases as the channel diameter decreases or the channel wall roughness increases. 

5 CONCLUSIONS 

1. The combined flow velocity and angle in premixed mixture are approximated.   
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2.  Periodic flows appear with the radial viscous flow model. 

3. The estimated scale of the flow turbulence agrees with the scale of the flame front turbulence 

observed in experiments.  
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