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1 Introduction

The propagation of premixed flames in tubes and channels is of significant importance to the under-
standing of deflagration-to-detonation (DDT) transition in gases [1]. The general perception is that in
a confined environment a flame can accelerate into a detonation, but the actual mechanisms leading to
flame acceleration remain questionable. Common explanations rely on the onset of turbulence, which
leads to wrinkled flames of much larger surface area that propagate at a much higher speed than the lam-
inar flame speed. But even under laminar conditions flame acceleration could result from the combined
effects of wall friction and thermal expansion. The resistance exerted on the flow by lateral confine-
ment leads to a highly curved flame near the walls, which is stretched by the large change in density
resulting from the heat released during combustion and propagates at increasingly higher speeds. This
mechanism has been discussed in our recent publications [2, 3], where we systematically studied the
propagation of premixed flames in long narrow channels open at both ends. It was found that in long
channels, L/h ≫ 1 where L is the length of the channel and h its height, the dynamics depend on the
ratio of the channel height to the thermal thickness of the flame δT , namely on the parameter a ≡ h/δT .
In relatively narrow channels, a < ac, the flame accelerates through the combustible mixture at a nearly
constant rate, that depends on the thermal expansion parameter α = (Ta−Tu)/Ta, where Tu is the tem-
perature of the fresh unburned mixture, and Ta the adiabatic flame temperature. For realistic values of α
the flame at the end of the channel reaches a speed of approximately six times the laminar flame speed,
and the critical value ac ≈ 5. In wider channels the flame accelerates first at a constant rate, but after
reaching a critical distance that depends primarily on the channel’s aspect ratio L/h, it starts accelerat-
ing very rapidly in a near-explosion fashion. In these studies, the zero Mach number formulation was
adopted, with the Mach number defined as the ratio of the laminar flame speed SL to the speed of sound
c, namely Ma = SL/c. Accordingly, acoustic waves propagate infinitely fast and have no effect on the
flame propagation. Related studies by Bychkov et al. [4] and by Demirgok et al. [5] rely on model-type
equations for the flame front, and their validity is difficult to assess.

A fast traveling flame generates pressure waves in the unburned gas ahead that tend to preheat the fresh
mixture, adding to the heat transferred by conduction that is mainly responsible for its propagation. The
pressure waves are generally weak and the question is whether they could, in long enough channels,
lead to a significant increase in the flame propagation speed. This scenario is being tested in the present
study. In order to isolate compressibility effects from the effects due to confinement observed for a >
ac, we have considered here the case a ≪ 1, in which case the flame propagation speed increases
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only mildly and at a nearly-constant rate [2]. A related study was recently carried out by Kagan et
al. [6]. Indeed, such narrow channels may not be experimentally accessible. Nevertheless, the adopted
simplification enables fundamental understanding of the effects due to compressibility on the flame
propagation and allows extracting simple results about the flame dynamics that may be valid beyond
the strict range of validity of the model; the asymptotic results for a ≪ 1 were shown in [3] to remain
valid for values as large as a ≈ 5. Moreover, the channel under consideration may be thought as part
of a more general porous media setup consisting of multiple channels separated by thin solid walls of
thickness hw. The ratio hw/(h+ hw) is then equivalent to the porosity of the media. The periodicity of
the model allows focusing on a single channel, and because of the relatively large thermal conductivity
of the solid material, the walls may be treated as adiabatic. The more realistic case corresponding to
a = O(1), which combines compressibility and effects due to wall resistance will be discussed in a
future study.

2 General formulation

A combustible mixture of uniform density ρ0 and temperature T0 is contained in a long narrow channel
of height h and length L.. When the mixture is ignited at the left end of the channel, x = 0, a premixed
flame propagates down the channel towards the right end. The diaphragms containing the mixture in the
channel are removed instantaneously upon ignition allowing for the gas exposed to atmospheric pressure
to leave the channel freely at both ends. A schematic of the channel configuration is shown on Fig. 1.
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Figure 1: Schematic of the channel configuration, illustrating
the various length scales associated with the flame propaga-
tion.

The chemical reaction taking place in the
channel is modeled by a global irreversible
step of the form Fuel + Oxidizer → Prod-
ucts. If the reaction is assumed to be first
order with respect to each reactant, the mass
of fuel consumed per unit volume and unit
time

ω′
F ∼

(
ρ′YF /WF

)(
ρ′YO/WO

)
e−E/RT ′

,

where YF , YO are the mass fractions and
WF , WO the molecular weights of the fuel and oxidizer, respectively, ρ′ is the density of the mixture,
E is the overall activation energy, R is the gas constant and T ′ is the temperature. For lean mixtures
the changes in the oxidizer mass fraction during combustion are insignificant and YO may be treated as
constant; then ω′

F = Bρ′2Y e−E/RT ′
where B is an appropriately defined pre-exponential factor and the

subscript F was removed for simplicity. A similar expression results for the oxidizer consumption rate
in a rich mixture, with Y denoting the mass fraction of the oxidizer.

Dimensionless variables are introduced as follows:-

x = x′/δT , y = y′/h, t = SLt
′/δT , u = u′/SL, v = v′/(aSL), ρ = ρ′/ρu,

p = a2(p′ − pu)/ρ0S
2
L, Y = Y ′/Yu, θ = (T ′ − Tu)/(Ta − Tu),

where x, y denote the axial and transverse coordinates, u, v the velocity components and p the pressure.
The laminar flame speed SL and the thermal flame thickness δT = λ/ρucpSL are used as units of
velocity and length along the x-direction, and the channel height h is used to nondimensionalize the
transverse components with a = h/δT ; here λ and cp are the thermal conductivity and specific heat (at
constant pressure) of the mixture. The density, temperature, and pressure are made dimensionless using
their values in the fresh unburned mixture (denoted by the subscript “u”), such that pu = ρuRTu/W ,
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where W is the molecular weight of the mixture (assumed constant). The mass fraction of fuel in
the fresh mixture Yu is used to normalize the mass fraction Y , and the adiabatic flame temperature
Ta = Tu + QYu/cp is used in the definition of the normalized temperature θ. Finally, we note that the
factor a2 is incorporated in the pressure scaling as appropriate for narrow channels.

Assuming constant transport coefficients, the (dimensionless) governing equations are:

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0, (1)

ρ

(
∂u

∂t
+ u

∂u

∂x
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∂y
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+ Pr
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(2)

ρ
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∂x
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= − 1
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∂x2

]
(3)

ρ

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y

)
−

(
∂2θ

∂x2
+

1

a2
∂2θ

∂y2

)
=

γ − 1

α
Λ

(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ PrΦ

)
+ ω (4)

ρ

(
∂Y

∂t
+ u

∂Y

∂x
+ v

∂Y

∂y

)
− 1

Le

(
∂2Y

∂x2
+

1

a2
∂2Y

∂y2

)
= −ω, (5)

1 + γΛp = ρ(1 + αθ), (6)

where

Φ =

(
∂u

∂y
+ a2

∂v

∂x

)2

+ a2
[
2

(
∂u

∂x

)2

+ 2

(
∂v
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)2

− 2

3

(
∂u

∂x
+

∂v

∂y

)2]
is the viscous dissipation function and γ = cp/cv is the ratio of specific heats, with cv the specific heat of
the mixture at constant volume. It is convenient in the expression for the reaction rate ω to introduce the
large activation energy asymptotic expression for the laminar flame speed (SL)asp , and the adjustment
factor sL = SL/(SL)asp that must be numerically calculated for any finite β. Then

ω(Y, θ) =
β2(1 + α)2

2Le s2L
ρ2Y exp

{
β(θ − 1)

(1 + αθ)/(α+ 1)

}
, (7)

where β = E(Ta−Tu)/RT 2
a is the Zel’dovich number (β ≫ 1) with ρb the density of the burned

gas given by ρb/ρu = Tu/Ta. Values of sL for β, α considered here were given in [2]. The remaining
non-dimensional parameters appearing in these equations include the scaled Mach number Λ = M2/a2,
where M = SL/c is the Mach number based on the laminar flame speed SL and the speed of sound
c =

√
γpu/ρu at atmospheric pressure, the Prandtl number Pr = µcp/λ with µ the viscosity of the

mixture, and the Lewis number Le = λ/ρucpD, with D the (fuel-inert) mass diffusivity. Setting Λ = 0
we recover the zero-mach number equations.

Assuming symmetry, it is sufficient to specify boundary conditions along the centerline of the channel
y = 1/2 and at one of the walls, y = 0 say, as follows:

at y = 1/2 : v = ∂u/∂y = ∂θ/∂y = ∂Y/∂y = 0, (8)

at y = 0 : u = v = ∂Y/∂y = ∂θ/∂y = 0 . (9)

The boundary conditions at the two ends are:

at x = 0, ℓ : p = v = ∂u/∂x = ∂θ/∂x = ∂Y/∂x = 0 (10)

where ℓ = L/δT . These conditions are invariably appropriate when the flame is not within an O(δT )
distance from either end, with appropriate modifications required otherwise; these however will have a
negligible effects on the overall flame propagation for ℓ ≫ 1.

25th ICDERS – August 2–7, 2015 – Leeds 3



Kurdyumov & Matalon Effects of compressibility

3 Narrow channels

We consider now the case of a narrow channel a ≪ 1, and expand all variables in power series of a2, i.e.,
in the form f = f0 + a2f1 + . . . To leading order, Eqs (4)-(5) simplify ∂2θ0/∂y

2 =0, ∂2Y0/∂y
2 = 0

which, when integrated from y = 0 to y = 1/2 and using the appropriate boundary conditions yield
θ0 = θ0(x, t) and Y0 = Y0(x, t). Variations in the mixture properties across the narrow channel are
negligibly small, and θ0, Y0, which represent the mean (in the transverse direction) temperature and the
mass fraction, vary only with x and t. The momentum equations (2)-(3) reduce, to leading order, to

∂p0
∂y

= 0 ,
∂p0
∂x

= Pr
∂2u0
∂y2

; (11)

the first implies that p0 = p0(x, t), and permits a direct integration of the second equation which, when
using the boundary conditions (8) and (9) yields u0 = 6Uy(1− y), where U is the mean axial velocity
in the channel and

∂p̃0/∂x = −U(x, t). (12)

for the reduced pressure p̃0 = p0/12Pr. The continuity equation can now be integrated to give

ρ0v0 = −
[
∂ρ0
∂t

y +
∂(ρ0U)

∂x
(3y2 − 2y3)

]
where v0 = 0 at y = 0 has been satisfied. The condition v0 = 0 at y = 1/2 then yields

∂ρ0
∂t

+
∂(ρ0U)

∂x
= 0 . (13)

Note that the flow field (u0, v0) depends on the density ρ0 and hence on the temperature θ0 and mass
fraction Y0 which, at this stage are undetermined.

Focusing on equations (4)-(5), we now proceed to the next order in a2, and find

∂2θ1
∂y2

= ρ0
∂θ0
∂t

+ ρ0U
∂θ0
∂x

− ∂2θ0
∂x2

− γ − 1

α
Π

[
∂p̃0
∂t

+ u0
∂p̃0
∂x

+
1

12

(
∂u0
∂y

)2]
− ω(θ0, Y0) (14)

1

Le

∂2Y1
∂y2

= ρ0
∂Y0
∂t

+ ρ0U
∂Y0
∂x

− 1

Le

∂2Y0
∂x2

+ ω(θ0, Y0) (15)

where Π ≡ 12PrΛ. Integrating equations (14)-(15) from y = 0 to y = 1/2, and using (12) and (8)-(9),
yields

ρ0
∂θ0
∂t

+ ρ0U
∂θ0
∂x

− ∂2θ0
∂x2

=
γ − 1

α
Π
∂p̃0
∂t

+ ω(Y0, θ0), (16)

ρ0
∂Y0
∂t

+ ρ0U
∂Y0
∂x

− 1

Le

∂2Y0
∂x2

= −ω(Y0, θ0) (17)

Adding Equ. (13) multiplied by (1+α)θ to Equ. (16) multiplied by α and using the equation of state (6),
one obtains an equation for the pressure p̃0, namely

Π
∂p̃0
∂t

− ∂

∂x

[
(1 + γΠp̃0)

∂p̃0
∂x

]
= α

(
∂2θ0
∂x2

+ ω

)
, (18)

which was first derived in [6]. Thus, for narrow channels, the problem reduces to solving the initial
value problem consisting of equations (16)-(17) for the temperature and mass fraction, equation (18) for
the pressure and (12) for U , with the density given by the equation of state (6). These equations are to
be solved for 0 < x < ℓ subject to the boundary conditions (10). The flame position xf is defined below
as the position x at time t where the reaction rate ω reaches its maximum value.
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4 Numerical results

Numerical results of the initial value problem were obtained using a second-order, three-points differ-
ence scheme for the spatial derivatives with typical resolution of ∆x = 0.02 ÷ 0.05, and a first-order
approximation for time derivatives with a time step ∆t = 10−6 ÷ 10−7. No significant differences were
found in the results when ∆x and ∆t were halved. The corresponding temperature and mass fraction
equations were solved using an explicit method while the pressure equation was solved implicitly using
the Thomas algorithm. The initial conditions imposed were in the form of a hot spot located near x = 0;
the extent of the hot spot was found to have practically no effect on the flame dynamics.
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Figure 2: Temperature history in a channel of length ℓ = 200 for two values of Π.
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(b) Π = 0.01

Figure 3: Pressure history in a channel of length ℓ = 200 for two values of Π.
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Of primary interest in this study is the parameter Π, which is proportional to the representative Mach
number and is a measure of compressibility effects on flame dynamics. To illustrate the importance of
compressibility effects we present in Figs. 2 and 3 temperature and pressure profiles at increasing times
for the representative value Π = 0.01 as compared to the profiles for Π = 0, where compressibility
effects are absent. The main effect of compressibility is preheating the fresh mixture, as is evident
in Fig. 2(b), and the subsequent increase in flame temperature and propagation speed. The pressure
gradients that result from lateral confinement are significantly larger when compressibility effects are
present, as shown in Fig. 3(b), adding significant thrust that pushes the fresh mixture and draws the
flame towards the right end of the channel. Figure 4 shows the time history of the propagation speed
ẋf calculated for ℓ = 200 and several values of Π. For Π = 0, the flame accelerates towards the end
of the channel at a nearly constant rate, with ẋf = exp(αt/ℓ) shown as the open circles in the figure,
as discussed in [2]. As Π increases, the flame accelerates extremely fast, in a near-explosion fashion,
within a relatively short distance. Finally, it should be noted that for a given mixture and chemistry,
determined by the values of β, α and γ, the flame propagation in a long narrow channels is governed
solely by the parameter Π.
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Figure 4: Propagation speed calculated for several values of Π with ℓ = 200; the open circles for Π = 0
correspond to the asymptotic formula derived in [2].
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