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1 Abstract

This study is concerned with identification of the key interactions controlling deflagration-to-detonation
transition (DDT) in narrow smooth-walled channels. Two agencies contributing to the transition are dis-
cussed: hydraulic resistance for very thin channels (thick flames) and flame folding for wider channels
(moderately thick flames). The dual nature of the DDT mechanism is reflectedin the non-monotinicity
of the dependency of the run-up time/distance on the channel width.

2 Outline of the problem

Deflagration-to-detonation transition (DDT) occurring in smooth-walled thermally insulated channels,
narrow enough to ensure the laminar character of the developing flow, is arguably the simplest system
for theoretical/numerical exploration of the DDT. Yet, even under these benign conditions the emerg-
ing dynamical picture is complex enough [1-4] for straightforward identification of the mechanisms
involved.
The present study is concerned with assessment of the relative impacts ofhydraulic resistance and flame
folding which have long been recognized as important players in the transition event [5-9].
To describe the DDT in a channel, a set of 2D Navier-Stokes equations for compressible reactive flows
is employed; see Ref. [10] for details of equations and initial/boundary conditions. The reaction rate is
modeled by a single-step second-order Arrhenius kinetics,W = Aρ2C exp (−E/RT ), whereρ is the
gas density,C is the mass fraction of the deficient reactant, andA is the Arrhenius prefactor.
Scaled variables and parameters appearing in the further discussion aredefined as follows:Pr andLe
are Prandtl and Lewis numbers;Ma = up/ap, Mach number;up, velocity of the isobaric deflagration
relative to the burned gas;ap =

√

γ(cp − cv)Tp sonic velocity atT = Tp; Tp = T0 + QC0/cp, adi-
abatic temperature of burned gas (products) under constant pressure,P = P0; T0, initial temperature
of unburned gas;Q, heat release;γ = cp/cv; cp, cv, specific heats;C0, initial mass fraction of the
deficient reactant;(û, v̂) = (u, v)/ap, scaled flow velocity;D̂ = D/ap, scaled reaction wave velocity;
(x̂, ŷ) = (x, y)/xp, t̂ = t/tp scaled spatio-temporal coordinates;xp = aptp; tp = A−1Z exp (Np),
reference time;Np = E/RTp, scaled activation energy;Z = 1

2
Le−1N2

p (1 − σp)
2, normalizing factor
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to ensure that atNp >> 1 and isobaric conditions the scaled deflagration velocity relative to the burned
gas is close toMa; σp = T0/Tp; ρ̂ = ρ/ρp, whereρp = P0/(cp − cv)Tp is the density of combustion
products in isobaric deflagration;̂W = (tp/ρpC0)W , scaled reaction rate;xp = aptp = lth/Ma,
where lth = Dp

th/up; Dp
th, thermal diffusivity atT = Tp and P = P0; lth, flame width scale;

d̂ = d/xp = Ma(d/lth), scaled width of the channel.

3 Numerical simulations

The computational method adopted and its validation are discussed in Ref. [10]. Parameters employed
are specified as follows,

Pr = 0.75, Le = 1, γ = 1.3, Np = 5, σp = 0.125, (1)

Ma = 0.05, 0.05 < d̂ < 1 (1 < d/lth < 20).
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Figure 1: Reaction zone configurations (max Ŵ )
at several equidistant instants of time calculated
for d = lth (a) andd = 10lth (b, c-zoom). Note
the disparity between the transverse and longitu-
dinal scales: 45-fold (a), 20-fold (b) and 2.5-fold
(c) compressions. The transition occurs in two
stages - first near the wall and thereupon at the
centerline, reflecting the dual nature of the transi-
tion event.
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Figure 2: Time records of the reaction wave
velocitiesD̂(t̂), calculated ford = lth (a) and
d = 10lth (b) along the centreliney = 0. Here
D̂CJ corresponds to the Chapman-Jouguet deto-
nation, and̂a0, âp - to the sonic velocities in fresh
and burned gas, respectively. In all the figures, the
hats on the labels have been omitted.

Figures (1) (2) show the reaction zone configurations at several consecutive equidistant instants of time,
and the time record of the reactive wave speed, calculated ford̂ = 0.05 (d = lth) and d̂ = 0.5 (d =
10lth). In both cases one observes the transition from deflagrative to detonative burning. However,
at d = lth the transition occurs practically without the incipient acceleration, while atd = 10lth the
acceleration is quite pronounced.
Flame folding and hydraulic resistance are invariably entangled through no-slip boundary conditions
which makes a rational analysis of their individual influences very difficult. To assess the impact of
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flame folding we calculated the gap̂δ(t̂) between the leading and trailing parts of the advancing flame
front, x̂ = x̂f ,

δ̂(t̂) = max
0<ŷ<d̂

x̂f (ŷ, t̂)− min
0<ŷ<d̂

x̂f (ŷ, t̂) (2)

Figure (3) shows corresponding time records. Assuming the flame front tobe parabolic (Figs. 1,2) we
calculated thedegree of folding,

Σ =
flame front arclength

channel width
= (3)
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Figure 3: Time records of the reaction zone fold-
ing, δ̂ = max x̂f (ŷ) − min x̂f (ŷ), calculated for
d = lth (a) andd = 10lth (b).
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Figure 4: Time records of the reaction wave ve-
locities D̂(t̂) for 1D Σ-models (solid lines) and
for the associated 2D models (dashed lines), cal-
culated ford = 2lth (a) andd = 10lth (b).

Then we considered a 1Dfriction-free version of the problem with the original reaction rateŴ replaced
by,

ŴΣ = Σ2Ŵ , (4)

to ensure the overall mass flux through the flameρ̂(D̂ − û) to be proportional toΣ.
For thick flames (d = 2lth) the developing level of folding appears to be insufficient for triggeringthe
transition (Fig. 4). However, for moderately thick flames (d = 10lth) the transition indeed occurs, and
even faster than in the original 2D model. The adopted 1DΣ-model therefore overestimates the folding
effect and requires an appropriate mitigation. In any case, there appear to be two mechanisms capable of
triggering the transition: hydraulic resistance for very thin channels and flame folding for wider chan-
nels.
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Figure (5) depictsD̂ vs. Σ dependency whenΣ is considered as a prescribed time-independent pa-
rameter. Here, in line with the Deshais-Joulin positive feedback theory [5], the deflagrative burning is
maintained only for sufficiently lowΣ, converting abruptly into the CJ-detonation atΣ > ΣDDT = 6.1.
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Figure 5: Reaction wave velocitŷD vs. degree of
folding Σ, considered as a time-independent pa-
rameter. thd/l
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Figure 6: Run-up time (̂tDDT ) and distance
(x̂DDT ) vs. normalized channel widthd/lth.

4 Non-monotinicity

There is a more direct indication of the possible change in the DDT mechanism. If one looks at the
dependency of the run-up time (t̂DDT ) and distance (̂xDDT ) on the channel width, one observes a change
of monotonicity at aboutd = 2lth (Fig. 6). Atd < 2lth the flame folding is too mild and the transition
is caused by the resistance induced precompression and preheating of the unburned gas adjacent to the
advancing deflagration. The preheating eventually results in the thermal runaway (explosion) within
the reaction zone, rendering further deflagrative propagation unsustainable [4]. The system is then
compelled to find an alternative mode of dynamic equilibrium which is fast (subsonic or supersonic)
compression-driven burning.
At d < 2lth the widening of the channel reduces the impact of hydraulic resistance thereby extending
t̂DDT andx̂DDT . A further widening of the channel (d > 2lth) promotes the flame folding and hence the
flame speed, causing reduction oft̂DDT andx̂DDT . In this parameter range the flame-folding becomes
an important influence invoking its own positive feedback mechanism of the transition, first described
by Deshaies and Joulin [5]. And yet even further widening of the channel (4lth < d < 20lth) practically
does not affect the final level of folding (Fig. 7), but merely slows down its formation, which results in
the secondary buildup of the run-up time and distance (Fig. 6).

25
th ICDERS – August 2–7, 2015 – Leeds 4



L. Kagan and G. Sivashinsky DDT: Hydraulic resistance vs. flame folding

5 Prandtl number effect

For all the importance of the flame folding in wide channels and its ability to trigger DDT in unconfined
voritcal flows ([5, 8], Fig. 5), in confined systems detonation generally nucleates in the boundary layer
[11-13] (see also Fig. 1b,c) where the hydraulic resistance is known to promote the pressure buildup
[10]. In theoretical analysis the level of hydraulic resistance may be altered by changing the Prandtl
number, other conditions being fixed. Reduction of the Prandtl number extends the pre-detonation time
(Fig. 8). This may be perceived as the influence of hydraulic resistanceon the transition, although the
impact of Prandtl number on the pre-detonation dynamics of flame-folding is likely also to be of con-
sequence. More research on this intriguing issue is needed. A comprehensive yet tractable theory may
be based on an autonomous quasi-one-dimensional model allowing for the flame folding and hydraulic
resistance to act simultaneously.
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Figure 7: Time records of the normalized folding,
δ̂/d̂, calculated for several channel widths
(1 < d/lth < 20).
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Figure 8: Time records of the reaction wave ve-
locity D̂(t̂) calculated ford = 12lth at
Pr = 0.75, 0.15, 0.075; other parameters as in
Fig. 2.

6 Concluding remark

It would be desirable to test experimentally the found non-monotinicity effect,e.g. by extending recent
studies of DDT in capillaries and sub-millimeter gaps [14-16] overlow-pressure conditions – to facil-
itate formation of thick flames. Special care should be taken to reduce conductive heat losses whose
influence increases for thick flames. Good insulation may presumably be attained in double walled vac-
uum ducts, or in an extended honeycomb-like arrangement with thin partitions -to reduce their impact
on the gaseous phase.
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