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1 Introduction

The study of how detonation waves respond to losses is the primary expealraed theoretical means
of understanding detonation dynamics. Specifically, for condensddsixgs, quantifying the rela-
tionship between the diameter of a cylindrical charge with yielding confinemerpagation velocity,
and front curvature is the principal technique used to develop modetiefonation propagation for a
given explosive. Likewise, for gaseous explosives, the respoinge detonation velocity to losses in
a finite diameter channel or tube due to heat transfer and friction revedlislkhbetween the dynamic
parameters (e.g., detonation cells) that characterize its structure and itspytmteegation behavior as
guantified by the propagation velocity.

Recently, experimental results have been reported that appear to dispptedictions of classical front
curvature for both gas phasé[[1, 2] and condensed phase exg#¢3id]. In classic, front-curvature-
governed detonation waves, the propagation velocity deficit and crigtatity at failure should scale
between axisymmetric (diametéj and two-dimensional (slab thicknegsgeometries according to
d:t ~ 2:1. [5] The experimental results above report a scaling between thesestwoeagries of approx-
imatelyd:t ~ 1:1 for gaseous detonations in thin channels émnds 3 —4:1 for gaseous and condensed
phase detonations in wide rectangular slabs. Other studies, howewendrdied an approximate 2:1
scaling as predicted by classic front curvature modgls.] [6, 7] Therelifte between these results is
hypothesized to be the heterogeneity of the systems studied: In systems witth staminar-like re-
action zones, the classic scaling relation is expected to be valid. Systems tyjpihigould include
highly-argon diluted gaseous explosives or plastic-bonded condenrptosives (PBX'’s) with very fine
grain size in comparison to their critical diameter. In systems where the scatiagsbdown, the wave
is characterized by very rough, randomized and heterogeneoutisdgjcsuch as seen in hydrocarbon
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gaseous detonations without noble gas dilution and condensed explogiidneterogeneities having a
scale that are comparable to their critical diameter (e.qg., blasting slurriess T&x.).

This paper outlines a program to systematically investigate detonation ptimpagédile interacting
with yielding confinement in different dimensionalities (axisymmetric, two-dimeradjoand three-
dimensional). For convenience, an ideal gas equation of state will benadsbut the specific geometry
considered (an explosive layer bounded by an inert layer of corleadansity) is, in many ways, more
similar to rate stick and slab experiments widely used for condensed phplesiess. Both steady,
ZND-type analytic models and multidimensional and unsteady computational simglatit be ex-
amined. We begin, in the present study, by examining a perfect gas sybiieimis expected to exhibit
near-classical scaling due to its smooth wave structure. Specificallyssupeedependent reaction rate
is selected with a reaction orderof 2. This system appears to be stable, resulting in a laminar reaction
zone structure, but still results in a critical dimension at which the detonatilsn This reaction model
avoids the stability issues associated with using Arrhenius-type reactioraniscts, which result in
unconditionally unstable modes in multidimensional simulations. Extensions of thiswtiidxamine
increasing reaction order and, eventually, Arrhenius-based kineiticsngreasing activation energy, in
which instability-generated transient dynamics are encountered. Byrsatitally varying the degree
of instability in the detonation wave and measuring the scaling between geomiteig®int at which
detonation dynamics is no longer governed by front curvature and thbezomes dominated by local
mechanisms of propagation can be identified. In addition, detailed computedioie compared to an-
alytic models to determine the domain of appropriate application of models baseebdity divergent
flow or weakly curved shock fronts.

2 Modeling
2.1 Analytic Modeling

The detonation of a layer (two-dimensional) or column (axisymmetric) of ek@gss mixture bounded
by aninert gas can be treated via a quasi-one-dimensional stream alypgE®rirhis approach was origi-
nally developed by Tsugel[8] and Fujiwara [9] to model the experimentsmingers and Morrison [10].
The one-dimensional steady Euler equations with area change are ralipéntegrated along the cen-
tral axis of the explosive layer, starting from the post-shock state. fibeksvelocity is iterated upon
until a solution that passes smoothly through the sonic plane is identified (i.@igémvalue solution
satisfying the generalized Chapman Jouguet condition). The details ofrtdedure can be found
in [11]. In order to couple the diverging flow area through the reactamezo the yielding confinement
of the bounding inert gas, the flow of inert gas past the expanding at&tarproducts is modeled using
Newtonian impact theory, as first proposed by [8, 9]. This technigoeiges a simple, analytic, but
physics-based model to specify the rate of area divergence throeigéabtion zone.

For the calculations presented here, the reaction rate is assumed to follfmsnthe

ax p \"
dt—k:(l—)\)() ) Q)

pcy

This weakly state dependent model for reaction rate is used (rather tharotle familiar Arrhenius rate)
because the resulting wave is stable and thus can be verified via computétidrdynamic simulations

of the unsteady, multidimensional Euler equations (see next section).e@b&on order of, = 2 was
used; use of values of < 2 does not appear to result in critical behavior, meaning that the layer
thickness can be decreased indefinitely, resulting in a monotonic dednedsnation velocity. [12]
This type of pressure-dependent reaction rate model has recentlyubeé to model condensed-phase
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Figure 1: Pressure and Mach number (left) and stream tube area {agBtonation in a thin layer of
reactive gas surrounded by an inert layer, as calculated by quasitleam tube model. The ideal CJ
detonation presssure and Mach number profile is also shown (thin lines).

explosives.[[183, 14] The value d@fis arbitrary, and the results here will be reported in terms of half-
reaction zone length of the ideal CJ detonation. The ratio of specific feat$.333 and heat release

RLTl = 24 were used as values representative of a hydrogen/oxygen detonation

2.2 Computational Modeling

The unsteady, two-dimensional Euler equations with the same presqepedat reaction rate term
described above are solved using a second-order accurate algg@8dmarally, the chemical reactions
have much shorter time scales than those associated with the flow, resultinfpesstidue to coupling
the fluid dynamics and the chemical kinetics. In order to isolate this stiff sdarog a second-order
accurate Strang operator splitting method [15] is employed in this study. Tlee &guations with a
reactive source term is thus split into a homogeneous partial differeqtiatien for the fluid dynamics
and an ordinary differential equation for the chemical reaction. TheMWSchemel[156] is used to deal
with the inviscid flux as a sum of the convective and pressure terms duedgmiging the convection
and acoustic waves as two physically distinct processes. A third-oMBrRunge-Kutta method [17]
is used for the temporal discretization. The boundary condition along-tods is a mirror boundary
condition (axis of symmetry), so that only the upper half of the layer is simuliatéde case of a
two-dimensional slab. The upper boundary of the computational domaavéahe inert layer) is a
supersonic outflow condition to ensure that no reflected waves returthentmmputational domain.

The simulations were initialized with a region on the left end of the computationalidonteere the
initial pressure was set to twice the Chapman Jouguet pressure in oiiéiate a detonation. The wave
was initially overdriven and then allowed to propagate a distance suffiteriach a steady velocity.
We do not believe the details of the initiation process influenced the finalite®reported below.

3 Results

Figure[1 shows the reaction zone structure as calculated using the geadireensional (Q1D) stream
tube model described in Section 2.1. This calculation was done for thecribead case where the
explosive layer has a thickness bf3L., whereL: is the half reaction zone thickness of the ideal
CJ detonation. The eigenvalue veIociQty in this case is about 50% of the ideddtGnation velocity.
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Figure 2. Detonation wave structure for a two-dimensional layer of reagas bounded by inert gas.
The color scale represents pressure. White contours show valuesrefttion progress variable, and
the black dashed line is the sonic surface.

The reaction zone structure predicted by the Q1D model is also comparedrgattion zone structure
for an ideal CJ detonation (i.e., without lateral expansion). Interestitigdyreaction is only about 1/3
complete at the location of the sonic plane (reaction progress vaniabl€.33), which is a significant
contribution to the large velocity deficit of about 50%. This result diffems1f that of detonations
governed by Arrhenius reaction rates with divergent flow, for whighvislocity deficit is predominately
attributed to momentum losses and not due to incomplete reaction at the sonidbline

The two-dimensional computations are shown in Fig. 2, where the reactigngss variable is shown
in color and the sonic line is shown as a thick dashed line. The structure etbiaim good qualitative
agreement with the reaction zone structure proposed by Bdzil [5] aedtlg verified in computational
simulations by Sharpe and Braithwaile.|[14]

In Fig.[3, the propagation velocity of the detonation is plotted, as obtainedlateave had propagated
a distance sufficient to result in a steady wave velocity. The velocity is platedunction of the inverse
of the diameterL%/d) or twice the thickness of the explosive Iayér%(/%) and nondimensionalized
by the half-reaction thickness of the ideal CJ detonation. The wave velegitptted in this fashion,
following the convention of the condensed phase detonation literaturegasextiapolation to the-
axis should yield the ideal CJ velocity. The factor of two applied to the thickisem anticipation of
the expected 2:1 scaling between diameter and thickness. As the thickribedafer decreases, the
velocity predicted by the Q1D stream tube model progressively desreasié for an inverse diameter
or thickness ofL1/ (d or 2t) ~ 0.003, the slope reaches infinite. Continuing to iterate upon even
lower values of the shock velocity reveals a lower branch of the solutidnattfroaches the sound
speed, which is usually considered to be nonphysical. Thus, the turoing found in the steady
solution is associated with failure of the detonation wave. The computatichdigexhibited a similar
behavior, with the steady velocity of propagation decreasing until the isanelonger able to propagate
and fails (note only steady propagation velocities found in the simulationgpogted in this figure).
In the computational simulations, the critical diameter and thickness were toumel about a factor
of 3 smaller than those predicted by the Q1D model. Ongoing analysis is attempiutentdy the
magnitude of different sources of discrepancy between the Q1D anchRiDIlations. We conjecture
that the likely explanations are: (1) The detonation flow-field in the caseeakveonfinement (the
case considered here) is inherently multidimensional and cannot béveffgtreated with a quasi-one-
dimensional model and (2) the interaction with confinement has been tresiteyl highly idealized
Newtonian impact theory, which neglects the actual shock physics of thradtiten with the boundary.
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Figure 3: Detonation velocity (normalized by ideal CJ velocity) as a functiolayer thickness or
diameter (nondimensionalized by the half reaction length of the ideal CJ dietorfar the quasi-one-
dimensional stream tube model (curves) and CFD simulations (points).

Although the Q1D model does not explicitly treat the shock front curvadivergent flow along the
central axis can be shown to be equivalent to shock front curvatdyéd 8] Thus, if the correct physics
can be incorporated into determine the flow divergence, the model shewble to be brought into
agreement with the numerical simulations. The observed critical velocity iahvidilure occurs is in

fairly good agreement between the model and simulation, however. In b®t®1BD model and the
2D and axisymmetric computational simulations, the results obtained appeatet@gpeoximately as

predicted by theory; the diameter/thickness ratio at the failure point is sippately 2:1.

4 Conclusions

The results of this study verify that a detonation wave governed by aynedependent reaction rate,
which generates a stable detonation wave structure, exhibits the 2:1 scethiveeh () the critical di-
ameter and critical thickness anid) ¢he velocity deficit as these critical velocities are approached for
the two different geometries considered. While the stream tube model géEswd Fujiwara over pre-
dicts the critical diameter and thickness by a factor of approximately 3, tHeadive behavior of their
model and the critical velocity at which failure occurs agree well with the rdetailed, multidimen-
sional simulations. This work lays a foundation for further studies that withputationally examine
increasingly complex wave dynamics, including detonations governedibeAius kinetics, which ex-
hibit a transient cellular structure, in order to determine if and when a Bosakin the classic scaling
relationship occurs.
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