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1   Introduction  
Detonation is a very complex hydrodynamic flow coupling with chemical kinetics. It consists of a 
shock wave followed by a zone in which the fuel is rapidly consumed. For direct numerical simulation 
of detonation, additional source terms modeling chemistry introduce extremely small scales into the 
flow. Due to multi-scale nature of detonation, the discretization of the flow domain needs to use 
properly grid system. Unless a very fine grid system is employed in reaction zone, the details of the 
detonation structure can not be revealed. Uniform mesh is a computationally expensive procedure due 
to the large separation of the characteristic scales. Adaptive Mesh Refinement(AMR) method refines 
the mesh locally to focus computational effort on reaction zone. As an efficient approach for 
detonation simulations, AMR method has become increasingly popular in recent years [1, 2]. 
We describe an AMR method based on high order finite difference Weighted Essentially Non-
Oscillatory (WENO) scheme. The method combines the Berger–Colella [3] block structured AMR 
method with high order finite difference WENO scheme and Runge–Kutta method. The details of the 
method are outlined in the paper. We apply the method to solving Euler equations coupling with 
chemical reaction, which is an appropriate model for detonation. The performance of the method is 
analyzed by the instability [4] of low-overdrive detonations in high activation energy gaseous mixtures. 
One and two-dimensional test cases are performed. The results of the test cases demonstrate the 
advantages of the method from the view of accuracy and high efficiency. 
The paper is organized as follows. Section 2 summarizes the governing equations for the detonation 
and the numerical method. Section 3 focuses on the implementation of AMR method based on high 
order finite difference WENO scheme. In Section 4, the results of one and two-dimensional numerical 
simulations are presented. The conclusions are summarized in Section 5. 

2   Governing equations  
The appropriate model for detonation propagation in premixed gases neglects the effect of viscosity, 
the heat transfer, diffusion and body forces. It can be written as the Euler equations with reactive 
source terms. In two-dimensional Cartesian coordinates these equations are given by: 



Wang Cheng                                                               AMR Method base on WENO for detonation simulation 
 

24th ICDERS – July 28 - August 2, 2013 – Taiwan 2 

U F G S
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                                  (1) 

( )
( )

2

2

( , , , , )
( , , , , )

( , , , , )

(0,0,0,0, )

T

T

T

T

U u v E Y
F u u p uv E p u uY

G v uv v p E p v vY

S

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ω

=

= + +

= + +

=

                                         (2) 

Here u  and v are the components of the fluid velocity in x and y directions, respectively. ρ is the 
density, p is the pressure, E  is the total energy per unit volume, and Y  is the mass fraction of the 
reactant. The total energy E is defined as 

( ) 2 2/ 1 ( ) / 2E p u v qYγ ρ= − + + +                                                   (3) 

Here q  is the heat production by chemical reaction, and  γ  is the ratio of specific heats, the source 
term ω  is assumed to have an Arrhenius form and written as   

( )/aE RTK Yeω ρ −= −                                                                 (4) 

Here aE is the activation energy and K  is a constant rate coefficient. 
For perfect gas, the state equation is 

p RTρ=  
The governing equations are discretized with fifth-order finite difference WENO scheme in space, and 
third-order TVD Runge-Kutta method in time.  

3   Numerical method 
A uniform Cartesian grid is used to discretize the domain min max[ , ]x x x∈ , with N  equally spaced 
nodes.The full discretization of the solution vector can be written as ( , ) n

iU x t U→ . Here, i  is the spatial 
node number corresponding to the location min ( 1/ 2)ix x i x= + + ∆ , where max min( ) /x x x N∆ = − ,and n  is 
the time level corresponding to 

1

n
n mm

t t
=

= ∆∑  where mt∆ is the time step for each integration step. We 
define 1/2 1/2[ , ], 1,...,i i iC x x i N− += = as uniform numerical grid with centers at ix . 
The uniform grid above is called 'root grid'. Finer grids, called the child of the root grid. are only 
created on parts of the domain. The 'root grid' and the child of 'root grid' can be organized into a 
tree/hierarchy structure.  
For fixed mesh refinement ratio 3r = , a root grid iC has three child grid which are defined as 

'
, 1/2 1/2[ ( 1) / 3, ( 3) / 3], 1,...,3i j i iC x j x x j x j− += + + ∆ + − ∆ = . The centers of the child grid are located at 

( 2) / 3ix j x+ − ∆ . 
If k and 'x∆ are defined as 3 1k i j= − − and ' / 3x x∆ = ∆ , respectively, child grid '

,i jC can be expressed as 
' ' '

1/2 1/2[ , ]k k kC x x− += , with '
min ( 1/ 2) 'kx x k x= + + ∆ . The centers of grid located at '

kx . In order to ensure 
stability of explicit difference schemes, the time step need to be refined in the same refinement 
ratio.The time step on the child grid is defined as ' / 3m mt t∆ = ∆ . The solution vector can be written as 

'm
kU . 

The criterion for refinement comes from the solution of root grid,such as small scale features,variable 
physical parameters and so on. Mass fraction of the reactant Y is employed as a criterion in this paper. 
The value of Y is between 0 and 1 in reaction zone.The grids with 0 1iY< <  are flagged. Two grids 
around the flagged grid form a buffer zone. The grid in buffer zone is alse flagged to ensure that 
discontinuities or other regions with large error does not propagate from a fine grid into coarser 
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regions. Bisection method[5]is used to organize the grids which is flagged into rectangular patch.All 
root grids in the patch need to be refined. Each patch can be consider as a new domain with finer mesh. 
On new domain, the numerical algorithm WENO-RK is implemented. Initial solutions and boundary 
conditions are necessary before we discretized the new domain. 
Take time step [ , ]n n mt t t+ ∆  for an example, the details of construction on the patch are as follows. The 
data on the new domain at nt is defined as n

kU . If iC  is covered by previously existing fine grids, then 
existing data of fine grid are copied directly into n

kU . Otherwise n
kU must be obtained from spatial 

interpolation of the root grid solutions n
iU . The 5-th WENO interpolation is used in the paper.  

   2 1 1 2( , , , , )n n n n n n
k i i i i iU WI U U U U U− − + +=                                                     (5) 

All the finer grids on the patch get a solution in the initial stage. 
Next step is to construct boundary conditions for the patch, not only at the initial stage, but also at 
intermediate fine grid time steps and their RK substages. We define Ub  as the value of the grids on the 
patch boundary and employ Hermite interpolation[6] using the  value of nUb , 1nUb + , ( )n

tD Ub , 1( )n
tD Ub + . 

( )tD Ub is the temporal derivatives. ( )n
tD Ub , 1( )n

tD Ub + are obtained from their spatial derivatives at 
both nt and 1nt + as 

 ( ) ( )t x
dUbD Ub F U S
dt

= = − +                                                             (6) 

nUb  and 1nUb + can be constructed by 5-th WENO interpolation. A third order polynomial ( )M t  is 
constructed by Hermite interpolation as 

1 1 1 1( ) , ( ) , '( ) ( ) , '( ) ( )n n n n n n n n
k k t k t kM t Ub M t Ub M t D Ub M t D Ub+ + + += = = =                     (7) 

Take time step '[ , ]n n mt t t+ ∆  for an example, the first and second stages in third order TVD RK method 
are reconstructed as 
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(1) ( )nUb t  and (2) ( )nUb t  denote the boudary conditions on the first and second Runge-Kutta stages, 
respectively. 
Based on the values of initial stage and boundary conditions, the solution n

kU of the fine grids can be 
evolved to time 1nt + .We use the fine grid solution replace the root grid solution. One-dimension AMR 
method can be easily extended to multi-dimensional problems using a dimension by dimension 
approach. 

4   Results and discussions 
The AMR method is first tested by pulsating one-dimension detonation. It is well known that below a 
threshold in overdrive, one-dimension in high activation energy is unstable and a large number of 
unstable modes interact with each other in the finite-amplitude, and nonlinear regime. In the 
increasingly chaotic regime, small differences in truncation errors between algorithms eventually lead 
to large difference of solutions. In test case, the values of the heat release, activation energy, overdrive 
factor, and ratio of specific heats are fixed at 50Q =  , 50aE = , 1.6f = and 1.2γ = . All one-dimension 
simulations in the paper are performed on the domain with [0,1000]x∈ . 
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Fig.1 shows AMR results using three groups of grids with different sizes. The relative grid size is 
defined as n . The smaller n  means that the size of the grid is smaller. With the decrease of the grid 
size, the numerical solutions of AMR show a good convergence. Fig.2 shows a comparison between 
AMR and corresponding uniform mesh. AMR has the same grid size in the reaction zone with the 
uniform mesh. In other regions, the grid size of AMR is three times that of uniform mesh. The 
numerical solutions of AMR are observed to match the uniform mesh solution very well.  
The point tagged with 'Fickett&Wood' in Fig.3 is an theoretical solution with 50Q =  , 50aE = , 

1.6f = and 1.2γ = . The value of the point is 98.6. and it can be used to test our numerical method. The 
results of AMR converge quickly to the point. Fig.4 shows the pressure distribution near the 
detonation front at t=65. grid points in the reaction zone is finer than other area . resolution of pressure 
is well shown in Fig.4. 

  

Figure 1. Pressure history at the perturbed ZND shock 
for one-dimensional plusting detonation. n  is the 
relative grid size, and there is 5/n grids in half 
reaction. 

Figure 2. Pressure history at the perturbed ZND 
shock for one-dimensional plusting detonation of 
AMR and uniform meshes. 
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Figure 3. The peak pressure of the ZND shock front in 
the time domain 

Figure 4. pressure distribution near the 
detonation front with t=65 

Tab.1 outlines the CPU running times of AMR and corresponding uniform mesh. The terminal times 
of the simulation are both 80. Compared with the uniform mesh, we can find that CPU running time 
for AMR consumes only 9441 s, therefore AMR in the paper is more efficient. 

Table 1: CPU running time Comparison between AMR and uniform mesh  

One-dimension plusting detonation AMR Uniform mesh 
points 3500 10000 

CPU time(s) 9441 27755 
relative grid size n 1.5 0.5 

We extend AMR method to two-dimensional via a dimension by dimension fashion. In two-dimension 
detonation, the triple point trajectories form regular patterns called detonation cells. Cellular structure 
depends primarily on the energy release to the mixture. In this test case, the values of the heat release, 
activation energy, overdrive factor, and ratio of specific heats are fixed at 50Q =  , 50aE = , 

1.05f = and 1.2γ = . The results shown in Fig.5 are carried out in a channel with a size 30 1/2L × 
300 1/2L . The base mesh of AMR  is 500×50 and the mesh of uniform mesh is  is 500×50 too. It is easy 
to be found from the contour map of the pressure that the flow structure near detonation front is 
improved very well. The results shown in Fig.6 and Fig.7 are carried out in a channel with a size 30 

1/2L × 300 1/2L . The base mesh of AMR  is 500×50 .The mesh of the uniform mesh is 1500×150. Fig.6 
shows that the grids of  AMR, the grids point in the reaction area is finer than other area. AMR has the 
same grid size in the reaction zone with the uniform mesh. In other regions, the grid size of AMR is 
three times that of uniform mesh. Fig.7 shows the numerical result of AMR. Compared with the result 
of corresponding uniform mesh in Fig.8, it is found that there are certain differences in the detials of 
the detonation cells. Because of the unsteadiness of the detonation with 50aE = , small error can make 
the solution change dramatically. AMR method has minor loss of accuracy in two-dimension 
detonation. Future work will focus on the improvement of AMR method in three-dimension.The 
results in Tab.2 confirm the efficiency of  AMR. 

  
(a)                                                                                   (b) 

Figure 5. (a) pressure distribution near the detonation front of AMR, the base mesh is 500×50 
(b) pressure distribution near the detonation front of uniform mesh, the mesh is 500×50 
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Figure 6. The grid map of AMR 

Table 2: CPU running time Comparison between AMR and uniform mesh 

Two-dimension detonation AMR Uniform mesh 
points 500×50 1500×150 

CPU time(s) 7116 44340 
relative grid size n 1.5 0.5 

5   Conclusions 
We describe an efficient AMR method based on high order finite difference WENO scheme for 
numerical simulation of detonations. The performance of the method is analyzed by instability of low-
overdrive detonations in high activation energy gaseous mixtures. It is well known that Low-overdrive 
detonations in high activation energy gaseous mixtures are unstable to both longitudinal and transverse 
modes. Small differences in truncation errors between algorithms eventually lead to dramatic change 
of solutions. We obtain one and two-dimensional results of the test case. In pulsating one-dimension 
detonation test case, the solution of AMR matches the corresponding uniform mesh solution very well. 
CPU running time of uniform mesh is three times that of AMR. In two-dimension detonation test case, 
there are some difference between the solution of AMR and corresponding uniform mesh, but CPU 
running time of uniform mesh is six times that of AMR. In general, the method performs very well in 
detonation simulations and it provides significant savings in CPU time with only minor loss of 
accuracy. 
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