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1 Introduction 

In numerical simulation of gas detonation propagation, the density, pressure, or chemical reaction 
process is sometimes negative. For example, when detonation wave passes through certain complex 
geometries, there appear some domains with low density and pressure in the diffraction area. Under 
such conditions, density and pressure may become negative in the simulation, which runs counter to 
the actual physical process and causes blow-ups. The traditional solution is to replace the negative 
values by positive ones or zero, resulting in the destruction of conservation and stability [1]. How to 
build positivity-preserving schemes without destroying the accuracy, conservation and stability 
becomes an urgent problem in the high order numerical simulation of detonation wave. 
First order and second order positivity-preserving schemes were well studied in [2, 3]. High order 
positivity-preserving Runge-Kutta discontinuous Galerkin (RKDG) scheme for two-dimensional Euler 
equations with one-step chemical reaction is proposed in [1]. RKDG is an important method in 
numerical simulation. It has the ability to easily handle boundary conditions with complicated 
geometry. It is an efficient method suitable for parallel computing. In this paper, we construct high 
order positivity-preserving RKDG scheme in two-dimensional Euler equations with two-step chemical 
reaction to solve the problem of negative density or pressure in numerical simulation. The reliability of 
RKDG method with positivity-preserving limiter is verified by several examples of detonation 
diffraction. 

2 Positivity-preserving discontinuous Galerkin method 
We consider two-dimensional Euler equations with two-step chemical reaction 
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where , , , , ,x yp E T u u  denote pressure, density, energy, temperature, x-velocity and y-velocity;   and 

  denote chemical reaction process; E1 and E2 denote activation energy, ,  denote chemical 

reaction rate constant, 
1k 2k

  denote induction-reaction process rate,   denote exothermic-reaction 

process rate. 
We define the set of admissible states by  
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It is easy to know that p is a concave function of U, and G is a convex set. 
The weak formulation of DG method solving (1) is, find h VhU  satisfying,  
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where , ( ) ( , )h F U f g ,e K  is the outward normal vector of the edge e on the element K . We 

consider the Lax-Friedrichs flux, 
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To construct positivity-preserving schemes, the most important step is to achieve positivity for the cell 
averages. Taking the test function as 1h   in (2), we get the scheme satisfied by the cell averages in 
the DG method. Consider the Euler forward time discretization, 
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denote the traces of (ij , )x yq  on the four edges respectively. 
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We use a L-point Gauss quadrature for the line integral and two L-point Gauss quadratures for the 

double integral in (3) where . Let  denote the Gauss quadrature weights on 1L k  kw
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Theorem 2.1.  such that 1 2,a a  1 2 1a a  . If the DG polynomial ( , )ij x y Gq , then the scheme 

(4) is positivity-preserving, namely, 1n
ij G U  under the time step restriction 

1 2 1 ˆ( )a a 1w   , 
2

2 2 2
2 2

(1 )
max exp exp

E E q
t k p a

RT RT




                
      

, 

where  denote the Gauss-Lobatto quadrature weights on ˆ kw
1 1

,
2 2

   
 such that . 

1

ˆ 1
N

k
k

w



Second, we consider triangular mesh K . We can obtain the conclusion for triangular meshes similar 
as rectangular meshes. (4) becomes: 
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where  denote the length of triangle’s edges. i
Kl ( 1,2,3)i  iν ( 1,2,3)i   denote its outward unit normal 

vector. Assume the line integrals in (5) are solved by the L-point Gauss quadrature where , 
and the source integral is solved by a M-point quadrature on a triangle with positive weights (for 
example, 7-point quadrature, see [4-6] for more details). 

1L k 

Theorem 2.2.  such that 1 2,a a  0 1 2 1a a  . If the DG polynomial ( , )ij x y Gq , then the scheme 

(5) is positivity-preserving, namely, 1n
ij G U  under the time step restriction 

3

1 1
1

2
ˆ

3
i
K

i

t
a l a w

K 


 , 

2
2 2 2

2 2

(1 )
max exp exp

E E q
t k p a

RT RT




               
      

 . 

Then we show the steps of positivity-preserving limiter: 
First, enforce the positivity of density. For each element K, compute 
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  is a very small positivity number for all K to avoid 0K  . We can choose . 1310 
Similarly, enforce the positivity of K  
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Second, enforce the positivity of pressure. We should find K  such that  
ˆ( ) [ ( ) ]K K K Kx x U U U

KU  and . ( ( )) 0Kp x U
Notice that p is a concave function of U, thus we have 
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satisfies that . ( ( )) 0Kp x U
The method does not destroy the accuracy and stability. It is proved in [1,6]. 

3 Numerical test 
In this section, we verify the reliability of RKDG method with positivity-preserving limiter by  several 
examples of detonation diffraction. In simulations, the parameters in chemical reaction are: 1.2  , 

, 1 27.7k  2 1 20.0k k  and . 1.71q 
Example 3.1 We simulate the propagation of the detonation wave from narrow duct into unconstraint 
space when corner angle is 90°. An initiation zone is set at [0,1]x , and its initial value is given as 

( , , , , , )x yu u E    .  The rest region is filled with the unreacted H2/O2 mixture 

with  initial condition of  (

(11,6.18,0,970, 1,1)

, , , , ,x yu u E



)   (1,0,0,55,1,1) .  The left inlet is inflow condition. The 

other boundaries are rigid walls.  
Fig.1 presents the colored contour of density and pressure. We observe that  a rarefaction zone appear 
at the corner after diffraction when detoantion wave propagates into the large space.  The pressure and 
density in the zone lower sharply. In the simulation, although the pressure and density drop very low 
at rarefaction region, they have not been negative.  

    
Fig. 1  Colored contour of density and pressure. Left: density. Right: pressure. 

Example 3.2 This example is similar as example3.1. The simulation of gaseous detonation waves 
from narrow duct into unconstraint space when corner  angles  is 150°. An initiation zone is set at 

, and its initial value is given as [0,2]x ( , , , , , )x yu u E    (11,6.18,0,970, 1,1) 

, , , , ,x yu u E

.  The rest region is 

filled with the unreacted H2/O2 mixture with initial condition of ( )    .  

The left inlet is inflow condition. The other boundaries are rigid walls. 

(1,0,0,55,1,1)

Similar as example3.1, the pressure and density drop very low at rarefaction region when detonation 
waves from narrrow duct into unconstraint space and they have not been negative. 
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Fig. 2  Colored contour of density and presure. Left: density. Right: pressure. 

Example 3.3 The simulation of gaseous detonation waves though the sawtooth geometry, as shown in 
fig.3. An initiation zone is set at [0,1.5]x , and its initial value is given as ( , , , , , )x yu u E    

; The rest region is filled with the unreacted H2/O2 mixture with  initial 

condition of (

(6.14,1,0,13.782, 1,1)
, , ,x yu u


, , )E   (1,0,0,0.6,1,1) . The left inlet is inflow condition. The other 

boundaries are rigid walls.  
Fig. 4 and fig. 5 show the colored contour of density and pressure. From the figure we can see that 
detonation wave becomes more complex after multiple diffraction and reflection. The pressure and 
density drop very low in diffraction zone and  raise highly in reflection zone. Gas in pocket is rare and 
the reflection wave couldn't propagate here. Although the pressure and desity lower more and more 
and close to zero, they have not been negative. It shows that the method can simulate the detonation 
diffraction quite well in complex geometrical configurations. 

 
Fig. 3  Channel geometry. H=1, h=0.5, L=2, α=14°, β=27° 

 
   Fig. 4 Colored contour of density. 
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   Fig. 5 Colored contour of pressure. 

4 Conclusion 
We discuss the positivity-preserving high order discontinuous Galerkin method for two-dimensional 
Euler equations with two-step chemical reaction, and show a method to solve the problem of negative 
density or negative pressure in high order numerical simulation. The method can keep the density and 
pressure positive without destroying accuracy and stability. In future work, we will use the method to 
carry out numerical simulation on gaseous detonation in more complex geometrical configurations and 
extend the method to numerical simulation of three-dimensional detonation.  
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