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1 Introduction 

The kinetic characterization of the H2/CO system is of interest due its role in sustainable combustion 

processes and promising application of syngas as a direct fuel is the electricity generation in an 

Integrated Gasification Combined Cycle (IGCC). However the interest in syngas chemistry at present 

is provoked not simply because of its role in IGCC and renewable energy, but also due to primary role 

of the CO/H2/O2 kinetic model in the fundamental hierarchal structure of the hydrocarbon combustion 

chemistry. The main objective of the present study is to provide a revision of the state of the H2/CO 

kinetic sub-mechanism underlying in the DLR hierarchal hydrocarbon reaction data base for practical 

fuel application, i.e. oriented mostly for heavy hydrocarbon oxidation processes [1,2]. 

To reliably develop predictive reaction models for complex chemical systems requires integration of 

large amounts of theoretical, computational, and experimental data collected by numerous researchers. 

The integration entails assessment of the consistency of the data, validation of models, and 

quantification of uncertainties for model predictions. Approach to the development of mechanistic 

reaction models consists of conjecturing the reaction mechanism and comparing the predictions of the 

constructed model to available experimental observations. Typically, such comparisons result in 

mixed outcomes: some show a reasonably close agreement and some do not. In the latter case, the 

apparent inconsistency obtained between the model and the experiment is argued to imply either that 

the model is inadequate or that the experiment (or, rather, its interpretation) is incorrect. 
DataCollaboration module of the automated data-centric infrastructure, Process Informatics Model 

(PrIMe) [3-6], can establish consistency or inconsistency of a data-and-model system, when the 

kinetic parameters of a reaction mechanism and experimental observations used for model validation 

are known within its uncertainties.  
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DataCollaboration [3-5] was applied to the H2/CO system of the kinetic model [1,2] to perform a 

systematic uncertainty and consistency analyses of the model parameters and related experimental data 

(ignition delay times and laminar flame speeds), to revise and to optimise the model parameters and 

finally to obtain the predictive model with evaluated uncertainty level, addressing questions of 

practical significance. 

 

2 DataCollaboration 

DataCollaboration is a set-based data analysis method that puts models, theory, and experimental data 

on the same footing [3-6], applicable to any data-and model system. DataCollaboration can decisively 

indicate whether related experimental data are consistent with each other within a specified chemical 

kinetics model. The model parameter uncertainties are included in the analysis as well. A framework 

is designed to make inferences from experimental observations in the context of an underlying model, 

discriminate among alternative hypotheses, quantify uncertainties of model predictions, analyze 

sensitivities to uncertainty levels, and optimize a model considering all uncertainties. In other words, 

instead of the two-stage approach—i.e., estimation of model parameters from fitting experimental data 

followed by model predictions using the obtained estimates, — DataCollaboration transfers the 

uncertainties of the “raw” data into model prediction directly. This approach casts a given problem as 

a constrained optimization over the feasible region of the parameter space, drawn on the entire 

knowledge content of a dataset. Numerical efficiency is attained through the use of surrogate models 

in numerical algorithms of DataCollaboration. The surrogate models (mechanisms with parameters 

modified through current step of optimization) are developed by Solution Mapping— approximation 

of model responses via computer experiments and regression. The approach combines solution 

mapping, which generates each surrogate models, and robust control techniques, which are used to 

solve the constrained optimizations. The mathematical details can be found in  [3-5]. 

A key requirement for such analysis is the formulation of a dataset, which entails creation of dataset 

units from experimental observations and a common kinetic model. A dataset unit should consist of 

the measured observation, uncertainty bounds on the measurement and thermokinetic data, and a 

model that transforms active parameter values into a prediction for the measurement. Identification of 

active parameters via sensitivity analysis and development of a quadratic response surface via 

computer experiments arranged according to a factorial design. 

Organized in this manner, the dataset can be subjected to rigorous numerical analysis. The results of 

the analysis suggest a sequential procedure with step-by-step identification of outliers and inspection 

of the causes. The analysis identifies a specific direction to follow for improving dataset consistency 

and provides an estimate of the extent of possible improvement. Altogether, this numerical approach 

offers a tool for assessing experimental observations and model building and improvement. 

 

3 Experimental observations and a common kinetic model 

 

The presented kinetic CO/H2/O2 sub model follows from recently developed C0-C2 reaction kinetic 

model [1,2]. The active parameters, i.e. reaction rates of the most important reactions, Table1, 

identified via sensitivity analysis and will be optimized  applying  DataCollaboration procedure [3-5]. 

The selected for the Consistency Analysis [3-5] experimental observations are collected in Tables 2 

for ignition delays [7-13], and in Table 3 for premixed laminar speed data [14-19]. 400 experimental 

targets were analysed. 
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Table 1: Reactions identified for the reaction rates optimization. 

 

 

 

 

 

 

 

Table 2: Experimental data for ignition delays simulation. 

 

 

 

 

 

 

 

Table 4. Experimental data for laminar flame speed simulation. 

 

 

 

 

 

 

N Reaction 
1 H + O2 = OH + O 

2 OH + H2 = H2O + H 

3 H2 + O =OH + H 

4 H+HO2 = H2 + O2 

5 H2O2 + H = HO2 + H2 

6 OH + OH (+M)  =H2O2(+M) 

7 H + O2 (+M) =   HO2 (+M) 

8 O2 + CO = CO2 + O 

9 CO + O (+M) =CO2 (+M) 

10 CO + OH =CO2 + H 

11 CO + HO2 =CO2 + OH 

12 HCO (+M) =  H + CO (+M) 

P, atm Composition φ   T5, K Ref. 

0.6 - 18 20%CO/ 80%H2 

40%CO/ 60%H2 

80%CO/ 20%H2 

90%CO/ 10%H2 

0.5 890 -1285 [7] 

11 - 32 CO/ H2/CO2/O2/N2 0.5 630 - 1150 [8,9] 

5.5 - 26 H2:CO=0.25 - 4.0 0.1 - 1.0 855 - 1055 [10] 

1.15 – 1.4 80%CO/ 20%H2 

90%CO/ 10%H2 

0.5 and 

1.0 

909 - 965 [11] 

15, 30, 50 CO:H2=0.0 - 0.8 0.36 to 

1.6 

1029,1011, 

1044 

[12] 

14 - 17 

 

50%CO/ 50%H2 

95%CO/ 5%H2 

Dilution  1: 2, 5, 10 

0.5 – 1.0 1048 - 1259 [13] 

P, atm Composition φ   T0, K Ref. 

1 50%CO/ 50%H2 

95%CO/ 5%H2 

0.5 – 6 300 [14,15,16] 

2,5,10, 

20,40 

50%CO/ 50%H2 

95%CO/ 5%H2 

0.5 – 5 300 [14] 

1 50%CO/ 50%H2 0.6– 1 500, 

700 

[17] 

1 50%CO/50%H2+20%CO2 0.5 – 1 300 [17] 

15 50%CO/ 50%H2 0.6 600 [18] 

15 CO/H2+40%CO2 0.75 600 [18] 

1 50%CO/50%H2 

95%CO/5%H2+ H2O 
0.6, 0.9 323 [19] 
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4 Results and discussion 

Obtained reaction model described satisfactory the experimental data ignition delay times, laminar 

flame speed and concentration profiles measured for different operating conditions, Figure 1-3. 
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Figure 1. Comparison of modeled ignition delays for H2/CO/air mixtures 

with  experimental data [7] at different pressure, = 0.5  
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Figure 2. Comparison of modeled laminar flame speed for H2/CO/air mixtures with experimental data [14-16] 
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