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1 Introduction

The interest in detecting unstable combustion conditions is continuously increasing together with the
need to reduce pollutant emissions. Indeed, this achievement is pursued by moving the operative condi-
tions of combustion appliances towards conditions that,while are beneficial with respect to the emissions,
are often more prone to the loss of stability of a stationary behaviour, sometimes leading to complete
extinction, like blow-off or quenching. It is clearly emerged from previous investigations that an oscilla-
tory behavior can be observed before instabilities linked with flame extinction [1]. Several examples of
this behavior are reported in the literature related with extinctions due to heat losses [1–3]. [4] identified
the bifurcation point before extinction as a subcritical bifurcation of oscillating solutions. [5] classified
different ways to extinction involving supercritical and subcritical Hopf bifurcations. [6] performed a
linear stability analysis with respect to the Damköhler number and the radiative heat release coefficient.
It has been shown how the S-shaped diagram evolves into a double branched structure with the presence
of an island. More recently, the theoretical studies have been sided by the experimental investigation of
a quasi 1D planar diffusion flame configuration [7, 8].

For the systematic analysis of the system dynamics, numerical bifurcation theory provides an arsenal
of algorithms and software packages, such as AUTO and MATCONT, for performing tasks such as
the continuation of stable or unstable steady states and limit cycles, as well as the detection of critical
points [9–12]. These packages are invaluable tools for performing systematic analysis for small to
medium scale systems, however their applicability is most-often limited by the dimensionality of the
system. Matrix free methods offer the possibility to overcome these limitations.

In [13], by systematically tracing these branches of oscillating solutions by employing timestepping/
matrix free methods [14–17], we found the exact location of homoclinic bifurcations which marks the
abrupt disappearance of the oscillating solutions with respect to the Damköhler number. The chosen
model was a relatively simple one, describing the dynamics of a planar counterflow flame with radiative
heat losses, already well investigated by several authors [4–6, 18, 19]. A still open question regards the
relevance that these solutions have with respect to a real diffusion flame. Two aspects need considera-
tion: the simplifying assumptions adopted and the range of parameters values at which the dynamical
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features are detected. Therefore, a new investigation is currently carried on by adopting a different non-
dimensionalization of the model equations that allows to relax some constraints artificially imposed in
the previous formulation and to easily connect the computed solutions to parameter values admissible
in real experimental configurations.

2 Mathematical model

The equations describing the evolution of planar 1D diffusion flames have been derived by Matalon et
al. [1,20]. Several investigations adopted the same model with only few differences [6,18,19]. Under the
hypotheses of a planar, constant density flow, the model equations for the diffusion flame with radiative
heat losses, assuming a one-step reaction, include the energy balance equation, written as:
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and the fuel and oxidizer species Y ∗
i , i = f, ox balance equations, written in the form:
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In these equations, Cp is the specific heat, assumed constant, α the thermal diffusivity, νox the stoichio-
metric coefficient of oxidant per unit of fuel, normalized with respect to νf = 1, Q the heat released
per unit of fuel, B the frequency coefficient of the reaction, Ea the activation energy, R the universal
gas constant, σ the Stefan-Boltzmann constant, and Kp is the Planck mean absorption constant, also
assumed constant.

3 Methodology

Limit cycles are computed as fixed points of a Poincare map using a shooting formulation. We employ a
well-tested initial value solver (LSODE) [21], for which numerical accuracy for the time integration of
the system, as well as variational equations (which are important for bifurcation detection and continu-
ation), can be easily adjusted [22]. If we consider that the evolution of the system is described through
an autonomous non-linear system:

dx(t)
dt

= f(x(t), λ),

with λ a system parameter, which serves as the bifurcation parameter, then to compute a periodic solu-
tion, one seeks for solutions which satisfy:

R ≡ x(0)− x(T ) = 0, (3)

where T the period of oscillation. Newton-Raphson iteration is employed to solve the non-linear set of
equations above, and the Jacobian matrix is:

∂R

∂x(0)
= I− ∂x(T )

∂x(0)
,

where I is the identity matrix and ∂x(T )
∂x(0) is the state transition matrix of the system, describing the

sensitivity of the “final” state x(T ) with respect to the “initial” state x(0). The state transition matrix is
computed from the variational matrix V(t) ≡ ∂x(t)

∂x(0) , the evolution of which is given by:

d
dt
V =

[
∂f

∂x

]
·V,
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with initial conditions:

V(0) =
∂x(t)

∂x(0)

∣∣∣
t=0

= I

In its current form the Newton-Raphson problem is ill-posed; due to the translational (in time) invariance
of the periodic solutions (any point on the limit cycle satisfies Eq.3), we single out one point on the limit
cycle, applying an additional algebraic constraint (also called pinning condition), which has the general
form:

g(x, λ, T ) = 0,

and allows the computation of the unknown period of oscillation T . We can examine the dependence
of the obtained periodic solutions on the system parameter λ, through the application of parameter
continuation techniques such as the pseudo arc-length continuation method [23].

4 Some relevant results

The nondimensional form of equations (1) and (2) can be written as [6, 18, 19]:

∂T

∂t
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∂x2
+DYoYfe

−Ta/T −RD
(
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o

)
(4)

L
∂Yo
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L
∂Yf
∂t

=
∂2Yf
∂x2

−DYoYfe−Ta/T , (6)

where T = T (x, t) is the temperature, Yo is the oxidizer mass fraction and Yf denotes the fuel mass
fraction of the mixture. L is the Lewis number (same for both the fuel and the oxidizer), and R is the
ratio of the characteristic chemical and radiation time scales. Above D is the Damköhler number, and
Ta is the activation temperature. The following boundary conditions are assumed at the porous walls:

at x = −1 : T = To Yf = 1, Yo = 0 (7)

at x = +1 : T = To Yf = 0, Yo = 1. (8)

A typical example of the complete characterization of branches of limit cycles solutions computed with
the proposed procedure is reported in Fig.1, for the case Ta = 1, R = 0.2 and R = 0.233. With respect
to previously published results, some new features are detected. Two stable steady branches exist on
the upper part of the diagram, in [6] observed only for lower valued of the parameter R (R = 0.1).
Furthermore, the full branch of stable periodic solutions between the Hopf points at D = 1823.9 and
D = 10471 has been successfully computed. Stable and unstable branches of steady state solutions are
depicted with solid black and broken lines respectively. The periodic solution branch is marked by the
open circles. The amplitude of limit cycles is represented by the dotted line with the open circles. Full
circles and triangles are used to point out turning and Hopf points respectively. Clearly, no extinction
occurs along this interval. The bifurcation diagram for R = 0.233 shows again the existence of a region
of D values, where stable periodic solutions are present. This region is located within the homoclinic
bifurcation point at D = 2742 and a supercritical Hopf point at D = 5957. In the vicinity of D = 2742
the period tends to infinity marking the location of a homoclinic bifurcation. Similar results are obtained
for the case of activation temperature, Ta = 1.2 and different R values. In particular, the parametric
dependence of T [0] with D for R = 0.01 is shown in Fig.2 (left). A region of unstable solutions marked
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Figure 1: Parametric dependence of temperature at x = 0 with respect to the Damköhler parameter.
Parameter set values: Ta = 1.0; R = 0.2 (left) , R = 0.233 (right) .
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Figure 2: Parametric dependence of temperature at x = 0 with respect to the Damköhler parameter.
Parameter set values: Ta = 1.2; R = 0.01 (left), R = 0.04 (right).

by the turning points at D = 488 and D = 7290 is revealed while the Hopf points at D = 269272 and
D = 842922 define a region of stable periodic solutions. The dependence of T [0] with respect to D
whenR is increased toR = 0.04 is depicted in Fig.2(right). A region of unstable solutions is pinpointed
by the turning points at D = 884 and D = 13900. The Hopf points are located at D = 11373 and
D = 99467. In this case the homoclinic bifurcation occurs well inside the ignited region.

5 A new non dimensionalization

In order to distinct the role played by the heat loss and the chemical production, the appearance of the
Da number in front of both the chemical production term and the radiative heat transfer, as it occurs in
eq. (4), should be avoided. Therefore it is here proposed to define different non-dimensional groups that
arises by assuming the following definitions for the dimensional variables:

t∗ = t tc =
d2c
D
t , x∗ = dcx , T ∗ =

QYf,s
Cp

T , Y ∗
i = Y ∗

f,sYi (9)
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By grouping all dimensional quantities, the following three non dimensional group arise:

Le =
α

ρCpD
, Da =

BYf,sd
2
c

D
, Leκ =

α

ρCpD

4d2cσKp

α

(
QYf,s
Cp

)3

(10)

The first two groups correspond to the definition of the Lewis number (here assumed to be the same
for both the fuel and the oxidizer) and the Damköhler number. The last group can be interpreted as
the enhancement of heat transfer due to the contribution of the radiative heat transfer. Adopting these
definitions, the non dimensional form of the model equations become:
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∂x2
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This model allows for the independent assignment of the fuel and oxidizer at the boundary: boundary
conditions at the porous walls depend upon the stoichiometric fuel-oxidizer ratio Yf,s being therefore
possible to modify the mixture strength. At the two boundaries pure fuel and pure oxidizer are fed,
respectively, on x = −1 and x = 1. Therefore the boundary conditions can be expressed as:

at x = −1 : T = Tb , Yf,b = 1/Yf,s , Yox,b = 0

at x = +1 : T = Tb , Yf,b = 0 , Yox,b = 1/Yf,s.

Stoichiometric conditions inside the channel, where the flame is expected to anchor, are identified by
Yf = 1 and having assumed equal diffusivities for fuel and oxidizer, it is located at x = 0.

6 Preliminary results and conclusions

A systematic exploration of the solution behaviour in the parameter space has been started to investigate
the possibility of the occurrence of the behaviour previously reported but in ranges relevant to real
diffusion flames. Fig. 3 shows results obtained with values of the main parameters corresponding
to values for all the coefficients typical of a real flames. The behaviour of the bifurcation diagram
confirms the occurrence of limit cycles close to the extinction point. By increasing the radiative heat
loss parameter κ, a different behavior is detected: the unstable branch disappears and the transition from
not-ignited to ignited solutions occurs crossing a region of stable limit cycles for Da between 537031
and 1076465.
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Figure 3: Parametric dependence of temperature at x = 0 with respect to the newly defined Damköhler
parameter. Parameter set values: Le = 0.97, κ = 1000, Ta = 1.2, Tb = 0.1, Yf = 0.06, νox = 5 and
κ = 1000, (left); Le = 1, Ta = 1.2, Tb = 0.1, Yf = Yox = 1, νox = 1 and κ = 8000 (right).
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