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1 Introduction

The aim of the present work is to investigate the role of a chain-branching kinetics model in the stability
of premixed flames in narrow adiabatic channels and therefore extend the results of previous investi-
gations which made use of a one-step kinetics model [1]. In particular, the work is focused on cases
with fuel Lewis number smaller than unity, where symmetry-breaking bifurcation occurs and steady-
state flames are stable. The one-step Arrhenius-type model F + O → P for the chemistry modeling
has been extensively used to better clarify the role of the complex physical phenomena involved in the
theoretical studies of flame dynamics in channels [1–5]. Among the most important physical phenom-
ena we distinguish the flame-fluid interaction, the flame-wall interaction and the differential diffusion
effect in the flame. The thermo-diffusive approximation, also called constant-density approximation, is
used to eliminate the flame-fluid interaction and concentrate on the diffusion effect of the species, either
for adiabatic boundary conditions [1, 2, 4] or for the flame-wall heat exchange effects [2, 4, 5] . Before
studying the intricate influence of all intermediate or radical species in the flame propagation in small
channels by using a detailed chemistry, we propose a theoretical study of the intermediate species effect
employing the simpler two-step kinetics model and the thermo-diffusive aproximation.

2 Formulation

Consider a premixed flame propagating in a planar channel at initial tempxerature T0 and immersed in
a Poiseuille flow with mean velocity U0. In what follows, h denotes the height of the channel and x′, y′

denote the longitudinal and wall-normal coordinates, respectively. The resulting curved flame separates
the frozen mixture, far to the left, from the combustion products downstream to the right. Because
this work deals with a diffusive-thermal model, the density of the mixture ρ, the heat capacity cp, the
thermal diffusivity DT , and the molecular diffusivity of the fuel DF and radical DZ are all assumed
to be constant. As a consecuence, the flow field is not affected by combustion and the flow velocity is
given by the Hagen-Poiseuille base flow, ux′ = 6U0(1− y′/h)(y′/h), and uy′ = 0.
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The mixture is assumed to be deficient in fuel and therefore the mass fraction of the oxidant remains
nearly constant. The chemical reaction is modelled by a convenient and simple chain-branching kinetics
proposed by Dold [7]. This two-step model includes the branching and recombination steps

F + Z → 2Z : ωB = AB
ρYF
WF

ρYZ
WZ

exp{−E/RoT},

Z +M → P +M +Q : ωC = AC
ρYZ
WZ

ρ

W
,

(1)

where ωB is the chain-branching reaction rate, which is thermally sensitive with an activation energy E,
and ωC is the chain-termination reaction rate, independent of the temperature. In what follows, AB and
AC are the reaction-rate constants, T is the temperature, YF and YZ are the mass fractions of fuel and
radical, M stands for any third body, Ro is the universal gas constant, and WF , WZ and W are the fuel,
radical and mean molecular weight, respectively. All the heat Q is assumed to be released only in the
completion step, being Q the heat released per unit of mole of fuel.

The main feature of this chain-branching chemistry is that it provides the existence of a so-called branch-
ing temperature Tc, below which the ratio of removal of radicals by diffusion and recombination exceeds
the branching rate. As a consecuence the net branching of radicals is frozen below Tc in the flame. This
branching temperature is usually defined by the relation ωB = β2ωC , see [7] for details. The former
expression, evaluated at the initial fuel mass fraction YF0 , being β = E(Tc − T0)/R

oT 2
c the relevant

Zel’dovich number based on Tc, reads

AB

AC

W

WF
YF0 =

(
E

Ro
· Tc − T0

T 2
c

)2

exp

{
E

RoTc

}
. (2)

As done before in [1,4], a reference frame attached to the flame at a point (x′∗, y
′
∗) is used to develop the

formulation. Consider a line paralell to the wall located at a distance y′ = y′∗. Following the temperature
distribution along this line, starting from the unburned side, we choose the first point x′ = x′∗ where the
temperature is equal to some reference value T = T∗. The velocity Uf (t

′) of this point relative to the
wall characterizes the time-dependent development of the combustion process.

To clarify the problem, the burning velocity of the planar flame SL together with the thermal flame
thickness, defined as δT = DT /SL, are used below to specify the dimensionless parameters. A non-
dimensional temperature defined as θ = (T −T0)/(Tc−T0) is also introduced. Choosing h and h2/DT

as the reference length and time scales, the non-dimensional coordinates and time become respectively
(x, y) = (x′/h, y′/h) and t = t′/(h2/DT ), and fuel and radical mass fraction are scaled with the initial
mass fraction YF0 according to F = YF /YF0 and Z = YZWF /(YF0WZ). Introducing these variables
and making use of (2) reduces the conservation equations to the dimensionless form

∂θ

∂t
+

√
d{uf (t) + 6my(1− y)}∂θ

∂x
= ∆θ + dµqZ (3)

∂F

∂t
+
√
d{uf (t) + 6my(1− y)}∂F

∂x
=

1

LeF
∆F − dµk(θ)FZ (4)

∂Z

∂t
+

√
d{uf (t) + 6my(1− y)}∂Z

∂x
=

1

LeZ
∆Z + dµk(θ)FZ − dµZ, (5)

where

k(θ) = β2 exp

{
β(θ − 1)

1 + γ(θ − 1)

}
. (6)

24th ICDERS – July 28 – August 2, 2013 – Taiwan 2



Fernández-Galisteo, D. Symmetry-breaking bifurcation

Herein ∆ = ∂2/∂x2 + ∂2/∂y2 for a planar channel. The values of the dimensionless burning velocity
uf (t) = U(t′)/SL are calculated by the additional condition θ(x∗, y∗; t) = θ∗, being θ∗ = (T∗ −
T0)/(Tc−T0) the dimensionless reference temperature at the reference point (x∗, y∗). Eqs. (3)-(6) need
to be supplemented by the following boundary conditions far upstream and downstrean of the flame
front

x → −∞ : θ = F − 1 = Z = 0

x → +∞ : ∂θ/∂x = ∂F/∂x = ∂Z/∂x = 0,
(7)

and by the boundary conditions at the wall

y = 0 and y = 1 : ∂θ/∂y = ∂F/∂y = ∂Z/∂y = 0, (8)

The following non-dimensional parameters appear in the above formulation: the fuel and radical Lewis
number LeF and LeZ respectively, the heat release parameter γ = (Tc − T0)/Tc, the heat of reaction
q = QYF0/[cp(Tc − T0)WF ], the flow rate m = U0/SL, and the reduced Damköhler number as a
quotient of diffusion to chemical time d = h2S2

L/D2
T . The Damköhler number can also be expressed

as d = (h/δT )
2, the square of the ratio of the channel height to the thermal flame thickness defined

above. The parameter µ = (ρAcDT )/(WS2
L) represents the inverse square of the planar flame burning

velocity and corresponds with the solution of the one-dimensional eigenvalue problem. This problem
and the values of µ were calculated numerically in [8], where the existence of fuel leakage and also
multiple solutions for flames with LeF > 1 was demonstrated near the flammability limit when using
the chain-branching kinetics model used here. In what follows, the Zel’dovich number and the heat
release parameter were kept fixed at β = 5 and γ = 0.7, respectively, for all calculations.

3 Symmetry-breaking bifurcation

Both symmetric and non-symmetric steady flame solution were obtained for a constant Damköhler
number d = 20 and for values of the heat of reaction q = 2 and 1.2, the latter corresponding to
flames close to the flammability limit. Here, the heat of reaction plays the role of the equivalence
ratio for sufficiently lean mixtures, so by using this simple chain-branching model, the influence of
the equivalence ratio on the stability of the steady-state flames can be addressed. The propagation
velocity of the symmetric flame solution was calculated by reducing the domain to half its height,
0 ≤ y ≤ 1/2, and imposing symmetric boundary conditions for the temperature and species mass
fraction, ∂θ/∂y = ∂F/∂y = ∂Z/∂y = 0, in y = 1/2. The calculations were carried out in a finite do-
main, xmin ≤ x ≤ xmax, where typical values xmin = −10 and xmax = 10 were used in a rectangular
grid of 2001×101 points. The independence of the results with the mesh were correspondingly checked.
The steady-state calculations were solved using the iterative Gauss-Seidel method with over-relaxation
when ∂/∂t = 0 in Eqs. (3)-(5).

Fig. 1 shows the variation of the flame velocity uf with the dimensionless flow rate m for different fuel
Lewis number. Dashed curves indicate unstable symmetric solutions. For sufficiently negative values of
m, or assisted flow, the flame is always symmetric. Increasing m to positive values the flame switches to
a non-symmetric solution for LeF < 1. When the intermediate specie is very diffusive, case LeZ = 0.3,
the symmetric solution can, however, be extended to larger values of m, reducing the critical flash-back
point (marked with the symbol ◦ in figures) to smaller values of m. The diffusivity of the radicals has
a strong effect on the stability of symmetric flames. Radicals diffuse from the highest concentrations
located in the more curved part of the flame within the branching zone both to the lowest concentrations
in this zone and to the wider recombination zone, promoting then the symmetry in the flame. However,
close to the flammability limit, that is for q = 1.2, this effect is significantly less pronounced because
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of the small radical concentration. The supercritical bifurcation points are marked with •. These points,
calculated using the linear stability analysis developed in the next section, are in agreement with the
results predicted by the steady-state calculations of symmetric and non-symmetric flames carried out in
this section. It is interesting to observe that for mixtures near the flammability limit and at small enough
values of LeF , cellular flames structures may appear, see Fig. 1c). Calculations of the non-symmetric
solutions for the cases q = 1.2 and LeF = 0.3 where unable to obtain using the numerical techniques
specified before.
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Figure 1: Computed flame velocity uf = Uf/SL with the non-dimensional flow rate m =
U0/SL for different LeF . For completeness, the corresponding values of µ used in the
calculations are specified herein: a) µ = 1.3018, 1.0248, 0.8987, 0.7976, 0.5915; b) µ =
1.0737, 0.7924, 0.6759, 0.5891, 0.4349; c) µ = 34.5498, 11.9067, 7.4947, 5.2054, 2.4502; and d) µ =
76.3209, 21.9037, 21.4825, 7.9743, 3.2300 for LeF = 0.3, 0.5, 0.7, 1, 4, in all cases respectively.

4 Linear stability analysis

The stability analysis of the symmetric steady flames is formulated introducing a small harmonic pertur-
bation in the form: θ(x, y; t) = θ0(x, y)+ε θ1(x, y) exp (λt), F (x, y; t) = F0(x, y)+εF1(x, y) exp (λt),
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and Z(x, y; t) = Z0(x, y) + εZ1(x, y) exp (λt), where λ ∈ C. The subindex 0 denotes the base solu-
tion obtained in the steady-state calculations above and ε is a small perturbation. As explained in [1],
there is no need to introduce a perturbation for uf in the analysis, so the linearized eigenvalue prob-
lem obtained when substituting the perturbation indicated above into Eqs.(3)-(8) leads to the following
two-dimensional homogeneous problem

λθ1 = −
√
d{uf + 6my(1− y)}∂θ1

∂x
+∆θ1 + dµqZ1 (9)

λF1 = −
√
d{uf + 6my(1− y)}∂F1

∂x
+

1

LeF
∆F1 − dµk(θ0){Aθ1 + Z0F1 + F0Z1} (10)

λZ1 = −
√
d{uf + 6my(1− y)}∂Z1

∂x
+

1

LeZ
∆Z1 + dµk(θ0){Aθ1 + Z0F1 + F0Z1} − dµZ1,

(11)

where A =
β

[1 + γ(θ0 − 1)]2
Z0F0. To study the stability of the symmetric steady flames Eqs.(9)-(11)

should be considered in half of the domain with the corresponding boundary conditions

x → −∞ : θ1 = F1 = Z1 = 0

x → +∞ : ∂θ1/∂x = ∂F1/∂x = ∂Z1/∂x = 0,
(12)

y = 0 : ∂θ1/∂y = ∂F1/∂y = ∂Z1/∂x = 0 (13)

and two kinds of boundary conditions in the midplane y = 1/2 which select either the symmetric
perturbation mode: ∂θ1/∂y = ∂F1/∂y = ∂Z1/∂y = 0 or the non-symmetric perturbation mode:
θ1 = F1 = Z1 = 0.

The main goal of the linear stability analysis lies in determine whether a given steady solution is stable
or not. Therefore, it is enough to have information about the eigenvalue with the largest real part λ1, and
the present work uses the method developed in [1] for calculating this main eigenvalue. This method is
simple to implement with a numerical cost comparable with that needed to calculate an unsteady solution
using a time-marching procedure. If the real part of the main eigenvalue obtained is positive, R(λ1) >
0, the steady solution is unstable, and conversely. For the cases studied here, with LeF < 1, only
steady solutions emerge and only symmetry-breaking bifurcations where found, so the symmetric mode
boundary condition always produces λ1 = 0, see [1]. Fig. 3 shows the values of the main eigenvalue for
the case q = 1.2. The bifurcation points obtained with the stability analysis are marked in Fig. 1 with
the symbol •, showing excellent agreement with those found in the steady-state calculations.

5 Conclusion and future work

The present work is focused on the symmetry-breaking bifurcation that appears for LeF < 1 using a
simple chain-branching kinetics model. Both symmetric and non-symmetric codes together with a linear
stability analysis are employed to investigate steady and stable solutions. We found that the diffusivity
of the intermediate species has a strong effect on the stability of symmetric flames, specially away from
the flammability limit. It may be interesting to study, in future works, the effect of the intermediate
species when pulsating and oscillatory modes appear for LeF > 1 and use the linear stability analysis
for predicting those bifurcation points.
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Figure 2: The growth rate of the main eigenvalue λ1 with the flow rate m for several values of LeF .
Calculated in the case q = 1.2: a) LeZ = 1; b) LeZ = 0.3. The case b) for LeF = 0.3 shows four
vertical asymptotes due to the double symmetric solution in each branch near m = 0, see details in the
inset of Fig. 1d).
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