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1 Introduction

Instability is the hallmark of detonation. It is the reasam the fascinating oscillatory dynamics of
one-dimensional gaseous detonations and for the beacgifular patterns in two or three-dimensional
detonations([4, 11]. The detonation oscillations rangiognf periodic to chaotic have been observed in
numerical simulations of one-dimensional detonationsesitf60s (see e.d./[5[7]/12]). Cellular patterns
are routinely observed both in experiments and numericalilsitions [[4, 111]. The principal questions
that a theory of such phenomena must address are: 1) Canproduee the observations at a qualitative
level and gain insight into the key physical mechanismsaesible for the observations? and 2) Can one
predict the detonation dynamics at a quantitative leve¢thas the first-principle modeling? Question
1) is obviously the easier of the two and research in thiscoe has enjoyed much success over the
last half a century.

Concerning the theory of detonation instability, the nagéibanalysis of the problem originates with
the work of Erpenbeck [2]3], which has subsequently beeisited by others[[§=10, 14, 117,21] (for
more details, see the reviews [13][15, 18] and referencesithe Based on the extensive work done
in the past, one might legitimately argue that the detonasi@bility theory has reached the state of
maturity [15]. Indeed, it ign principle clear how to formulate the problem and what needs to be
calculated ([, 2,16, 15]. After all, the reactive Euler eduaé have been known for very long time.
Linearization of the equations and of the shock conditiana straightforward procedure. After the
linearization, one needs to use, for example, the normalensoibstitution, and then solve the resulting
eigenvalue problem numerically [10]. Alternatively, orenaise the Laplace transform and again resort
to numerics to invert the transforrml![3]. Already in 1962 [Ekpenbeck wrote that “...to answer the
question of stability in a specific case involves a rathagdasut apparently straightforward numerical
computation”. Surprisingly, however, not a single suctcektion has ever been carried out for any
case of a realistic gaseous detonation.

The reason is, of course, thiat practice, the actual computations of detonation instability foliog/
this procedure are extremely difficult. The primary reasemumerical— the system of governing
equations is in general very stiff and the computationatedore rather involved requiring repeated
numerical solutions of stiff systems of ODE and a very largmher of evaluations of various integrals.
An additional source of difficulty is the far-field radiatiaondition that is necessary to ensure that
the eigenvalue problem is well-posed (i.e. the eigenfonstiare bounded). The latter is a theoretical
question that is still not completely settled, even thouggre is certainly some progress. As a result
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of these difficulties, the only comprehensive computatithveg have been carried out so far are those
for the perfect gas and the one-step Arrhenius kinetics [80j17]). Several results are available for
simple models of multi-step kinetics and for more complenatpns of state (e.d. [16]). But with the
exception of [1] there are no published linear stabilityufssfor real mixtures wherein the detailed
chemical mechanisms have been used. That is, from a prigmbice of view, the problem of predicting
whether and how a given real mixture is unstable is, remdykalill open. Erpenbeck’s remark in
[2] that “The conditions for stability of detonations, vizhat the zeros oV ()  have negative real
parts, is of extraordinary complexity”, remains valid tgdaven though the normal-mode approach of
Lee and Stewar{ [10] has considerably simplified the contjsuta compared to that of Erpenbeck.
Recently, methods based on the computation of Evans fumlstive also been introduced [8] with some
improvements on computational efficiency compared to thihateof Lee and Stewart. But again, the
success of the method has so far been limited to the idealizexhations.

Even though theoretical results on the instability of igali detonations are lacking, direct numeri-
cal simulations of the reactive Euler equations that inoa@fe detailed chemical mechanisms indicate
strongly that detonations are often unstable (see refeseimd[11]138]). However, such simulations are
affected by severe numerical issues limiting their pregicpower [20]. In particular, the problem of
convergence is amplified in detonations due to the presehsgamg instabilities, the wide range of
spatial and temporal scales that must be resolved, and #isibfity of chaotic dynamics [12]. The dis-
crepancies between experiments and simulations raise imaytant questions as to the validity of the
available chemical and thermodynamic data for the mixtuiiess modeling framework of the reactive
flows (Euler vs Navier-Stokes), and the numerical algorghin validating such simulation approaches,
an important role is played by various theoretical ressligh as exact solutions, which the simulations
must be able to reproduce. In detonations with complex céieymo such exact solutions are available,
and the only feasible theoretical prediction that could beduis that of the linear stability. As such,
these calculations can serve to benchmark the simulatidescoHowever, this is not the only value
of the stability calculations. They provide valuable imf@tion about the nature of the instability in a
given mixture that has implications for the nonlinear etiolu of detonations. For example, if only few
unstable eigenvalues exist, the detonation is expecteel tatber regular, while the increased number of
unstable eigenvalues is a sign of highly irregular detomati Therefore, the linear stability calculations
can serve to characterize explosive mixtures by their prsipeto instability.

Thus, the fundamental question for the detonation stalifi¢ory, namely: How to efficiently and accu-
rately predict the linear stability properties for a giveixmare? is a question of a primarily algorithmic
nature. Of course, this does not diminish its importance.

2 The linear stability problem

Within the framework of the reactive Euler equations, th&odation stability problem is in general
posed as follows. Let the reactive Euler equations, say indimensions, be written as (e.gl [4])

vi + Av, +Bv, =s, (1)

wherev=1[p u e x ]T is the solution vector is the fluid densityn is the fluid velocity,e is the
energy, anck is the vector (say of size) of the species concentrations. The matrideandB and the
source vectos are known functions of.. These equations have a traveling-wave solution of the form
v = v (z — Dt), whereD is the wave speed that is to be determined. Substitutingatisatz into[(1) ,

we see that must solve the system of ODE,

(A(V)-DD¥' =5 (), )

1Erpenbeck’s stability function
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wherel is the identity matrix. The steady detonation structureuishsa solution of this system that
contains a shock at say= 0, givesv = v, as the ambient-state constant solution ahead of the shock,
x > 0, and a smooth profile solvingl(2) that satisfies the Rankingediot jump conditions at = 0,
passes smoothly through a possible singularity of the matri- DI at some point:, < 0, and reaches

the equilibrium stater = v., atz — —oo. Both the ambient and the equilibrium states must satisfy
s = 0 to be the solutions of{2). Usually, the ambient state is mogeguilibrium (the cold boundary
difficulty), hences is forced to be zero at > 0. The system[{2) is solved then only:in< 0 subject

to the conditions at equilibrium at — —oco and the shock conditions (0) = v, (v, D), the latter
known explicitly as functions oD and the ambient state.

When self-sustained (Chapman-Jouguet) detonations a®deved, the matriA — DI is singular

at the sonic point and certain regularity conditions mustesearily be satisfied there to ensure that
the solutions of[{R) remain smooth. These conditions wiliydre satisfied for particular values @?.
Finding these values is itself a numerically involved psscédue to the saddle-point character of the
sonic point and the singular nature of the ODE (2)), but ohces found, the steady-state structure
is completely determined. Subsequently, the problem difilgtaof such structure can be posed and
solved, again numerically in general.

The linearization of the Euler equations is achieved bynigki = v (z) + ecééilc, y, t), substituting this
expansion into[{|1), and collecting terms@f(¢). The result is a linear syst

q: + Ag, + Bq, = Cq, (3)

which must be supplemented by the appropriate linearizatfdhe shock conditions. Her&, B, and
C are matrices that depend on the steady-state solution arieeace functions of.

Various existing algorithms differ by their approach tovsiod (3). Erpenbeck posed the initial value
problem forq and solved it by the Laplace transform @fz, y,¢) in ¢ and the Fourier transform in
y. As a result, the transformed unknowir{7) is a function of the Laplace-transform variable He
reduced the problem of the existence of instability to sinovthat a certain complex functidn () has
roots with positive real part. This functidn (7) depends on the steady state solution as wetl asd it
contains the entire information about the stability preipsrof a given mixture. Note that Erpenbeck’s
formulation [2] holds for rather general constitutive miedéNevertheless, the fact that fifty years later
the approach has never been applied to any system more cothaiethe idealized one-step Arrhenius
model, speaks of its prohibitively complex numerical natur

Much more feasible computations are afforded by the nommade approach [10], which has been
successfully extended to more complex systems than thetepeArrhenius model. However, again,
actual numerical implementation of the method for realistixtures remains as a theoretical possibility
only with some partial results presently availalhle [1].

3 Adirect numerical approach

We propose to circumvent the difficulties mentioned abovedypletely abandoning the traditional
approaches to the stability problem. The Laplace transtomththe normal-mode methods are sensible
and useful in handling simplified model problems. The smaihber of parameters that such models
contain affords their systematic study and allows one targpbrtant qualitative insight into the nature
of the instability. For example, the computations(in/[1(,drovided significant information on the role
of the detonation overdrive, the activation energy, andhnat release on the structure of the unstable

2\We omit here certain technical details having to do with theice of the frame reference and the appearance of the shock
position in [3).
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Figure 1. Left— computed spectra for the chain-branching model mechanfsibi6h Right — the
steady structure of the ozone detonation displaying a wadge of spatial scales involved.

spectrum. However, technical difficulties associated wittending these methods to realistic systems
remain prohibitive and motivate the search for alternatiethods.

At present, numerical simulations of the reactive Euleratigns can routinely be carried out with
sophisticated and accurate algorithms (even though clygeremain when attempting to make quan-
titative predictions[[20]). Somewhat paradoxically, ipaprs more difficult to solve the linear stability
problem than to perform such nonlinear simulations. Beedhe numerical computation is a rather
significant part of the linear stability theory in any casee anight argue for using the simulation algo-
rithms to solve the stability problem directly, bypassihg hormal-mode decomposition or the Laplace
transform. Of course, as a result, significant amount of adgatjpns must be carried out, but despite
such a drawback, the advantages of this approach are-lgavoids altogether the algorithmic prob-

lems having to do with the computation of the Erpenbeck’sfiam V' (7) or with the cumbersome
computations required by the normal-mode algorithm.

Previously, such direct (however nonlinear) computatiwese carried out in [19] for two-dimensional
idealized detonations. The shock-fitted algorithm presgbmn [19] is perfectly suited for the direct
solution of the stability problem and is extended in the enésvork to handle realistic mixtures. In
particular, here we consider the problem of detonation withodel three-step chain-branching chem-
istry [16] as a test case (Fig[d](1)-left) and the problem dbdation in ozone with its full reaction
mechanism consisting of three reversible reactions. Oarigus calculations of the steady-state deto-

nation structure in ozone reveal its severely multi-scaleire (Fig. [(1)-right), which poses a challenge
for numerical algorithms.
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