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1 Introduction

Instability is the hallmark of detonation. It is the reason for the fascinating oscillatory dynamics of
one-dimensional gaseous detonations and for the beautifulcellular patterns in two or three-dimensional
detonations [4, 11]. The detonation oscillations ranging from periodic to chaotic have been observed in
numerical simulations of one-dimensional detonations since 1960s (see e.g. [5,7,12]). Cellular patterns
are routinely observed both in experiments and numerical simulations [4, 11]. The principal questions
that a theory of such phenomena must address are: 1) Can one reproduce the observations at a qualitative
level and gain insight into the key physical mechanisms responsible for the observations? and 2) Can one
predict the detonation dynamics at a quantitative level based on the first-principle modeling? Question
1) is obviously the easier of the two and research in this direction has enjoyed much success over the
last half a century.

Concerning the theory of detonation instability, the rational analysis of the problem originates with
the work of Erpenbeck [2, 3], which has subsequently been revisited by others [8–10, 14, 17, 21] (for
more details, see the reviews [13, 15, 18] and references therein). Based on the extensive work done
in the past, one might legitimately argue that the detonation stability theory has reached the state of
maturity [15]. Indeed, it isin principle clear how to formulate the problem and what needs to be
calculated [1, 2, 6, 15]. After all, the reactive Euler equations have been known for very long time.
Linearization of the equations and of the shock conditions is a straightforward procedure. After the
linearization, one needs to use, for example, the normal-mode substitution, and then solve the resulting
eigenvalue problem numerically [10]. Alternatively, one can use the Laplace transform and again resort
to numerics to invert the transform [3]. Already in 1962 [2],Erpenbeck wrote that “...to answer the
question of stability in a specific case involves a rather large but apparently straightforward numerical
computation”. Surprisingly, however, not a single such calculation has ever been carried out for any
case of a realistic gaseous detonation.

The reason is, of course, thatin practice, the actual computations of detonation instability following
this procedure are extremely difficult. The primary reason is numerical− the system of governing
equations is in general very stiff and the computational procedure rather involved requiring repeated
numerical solutions of stiff systems of ODE and a very large number of evaluations of various integrals.
An additional source of difficulty is the far-field radiationcondition that is necessary to ensure that
the eigenvalue problem is well-posed (i.e. the eigenfunctions are bounded). The latter is a theoretical
question that is still not completely settled, even though there is certainly some progress. As a result
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of these difficulties, the only comprehensive computationsthat have been carried out so far are those
for the perfect gas and the one-step Arrhenius kinetics (e.g. [10, 17]). Several results are available for
simple models of multi-step kinetics and for more complex equations of state (e.g. [16]). But with the
exception of [1] there are no published linear stability results for real mixtures wherein the detailed
chemical mechanisms have been used. That is, from a practical point of view, the problem of predicting
whether and how a given real mixture is unstable is, remarkably, still open. Erpenbeck’s remark in
[2] that “The conditions for stability of detonations, viz., that the zeros ofV (τ) 1 have negative real
parts, is of extraordinary complexity”, remains valid today even though the normal-mode approach of
Lee and Stewart [10] has considerably simplified the computations compared to that of Erpenbeck.
Recently, methods based on the computation of Evans function have also been introduced [8] with some
improvements on computational efficiency compared to the method of Lee and Stewart. But again, the
success of the method has so far been limited to the idealizeddetonations.

Even though theoretical results on the instability of realistic detonations are lacking, direct numeri-
cal simulations of the reactive Euler equations that incorporate detailed chemical mechanisms indicate
strongly that detonations are often unstable (see references in [11, 13]). However, such simulations are
affected by severe numerical issues limiting their predictive power [20]. In particular, the problem of
convergence is amplified in detonations due to the presence of strong instabilities, the wide range of
spatial and temporal scales that must be resolved, and the possibility of chaotic dynamics [12]. The dis-
crepancies between experiments and simulations raise manyimportant questions as to the validity of the
available chemical and thermodynamic data for the mixtures, the modeling framework of the reactive
flows (Euler vs Navier-Stokes), and the numerical algorithms. In validating such simulation approaches,
an important role is played by various theoretical results,such as exact solutions, which the simulations
must be able to reproduce. In detonations with complex chemistry no such exact solutions are available,
and the only feasible theoretical prediction that could be used is that of the linear stability. As such,
these calculations can serve to benchmark the simulation codes. However, this is not the only value
of the stability calculations. They provide valuable information about the nature of the instability in a
given mixture that has implications for the nonlinear evolution of detonations. For example, if only few
unstable eigenvalues exist, the detonation is expected to be rather regular, while the increased number of
unstable eigenvalues is a sign of highly irregular detonations. Therefore, the linear stability calculations
can serve to characterize explosive mixtures by their propensity to instability.

Thus, the fundamental question for the detonation stability theory, namely: How to efficiently and accu-
rately predict the linear stability properties for a given mixture? is a question of a primarily algorithmic
nature. Of course, this does not diminish its importance.

2 The linear stability problem

Within the framework of the reactive Euler equations, the detonation stability problem is in general
posed as follows. Let the reactive Euler equations, say in two dimensions, be written as (e.g. [4])

vt +Avx +Bvy = s, (1)

wherev =
[

ρ u e x
]T

is the solution vector,ρ is the fluid density,u is the fluid velocity,e is the
energy, andx is the vector (say of sizen) of the species concentrations. The matricesA andB and the
source vectors are known functions ofv. These equations have a traveling-wave solution of the form
v = v̄ (x−Dt), whereD is the wave speed that is to be determined. Substituting thisansatz into (1) ,
we see that̄v must solve the system of ODE,

(A (v̄)−DI) v̄′ = s (v̄) , (2)
1Erpenbeck’s stability function
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whereI is the identity matrix. The steady detonation structure is such a solution of this system that
contains a shock at sayx = 0, givesv̄ = va as the ambient-state constant solution ahead of the shock,
x > 0, and a smooth profile solving (2) that satisfies the Rankine-Hugoniot jump conditions atx = 0,
passes smoothly through a possible singularity of the matrix A−DI at some pointx∗ < 0, and reaches
the equilibrium statēv = veq at x → −∞. Both the ambient and the equilibrium states must satisfy
s = 0 to be the solutions of (2). Usually, the ambient state is not an equilibrium (the cold boundary
difficulty), hences is forced to be zero atx > 0. The system (2) is solved then only inx < 0 subject
to the conditions at equilibrium atx → −∞ and the shock conditions̄v (0) = vs (va,D) , the latter
known explicitly as functions ofD and the ambient state.

When self-sustained (Chapman-Jouguet) detonations are considered, the matrixA − DI is singular
at the sonic point and certain regularity conditions must necessarily be satisfied there to ensure that
the solutions of (2) remain smooth. These conditions will only be satisfied for particular values ofD.
Finding these values is itself a numerically involved process (due to the saddle-point character of the
sonic point and the singular nature of the ODE (2)), but onceD is found, the steady-state structure
is completely determined. Subsequently, the problem of stability of such structure can be posed and
solved, again numerically in general.

The linearization of the Euler equations is achieved by takingv = v̄ (x) + ǫq (x, y, t), substituting this
expansion into (1), and collecting terms ofO (ǫ). The result is a linear system2

qt + Āqx + B̄qy = C̄q, (3)

which must be supplemented by the appropriate linearization of the shock conditions. HerēA, B̄, and
C̄ are matrices that depend on the steady-state solution and are hence functions ofx.

Various existing algorithms differ by their approach to solving (3). Erpenbeck posed the initial value
problem forq and solved it by the Laplace transform ofq (x, y, t) in t and the Fourier transform in
y. As a result, the transformed unknownq̂ (τ) is a function of the Laplace-transform variableτ . He
reduced the problem of the existence of instability to showing that a certain complex functionV (τ) has
roots with positive real part. This functionV (τ) depends on the steady state solution as well asτ and it
contains the entire information about the stability properties of a given mixture. Note that Erpenbeck’s
formulation [2] holds for rather general constitutive models. Nevertheless, the fact that fifty years later
the approach has never been applied to any system more complex than the idealized one-step Arrhenius
model, speaks of its prohibitively complex numerical nature.

Much more feasible computations are afforded by the normal-mode approach [10], which has been
successfully extended to more complex systems than the one-step Arrhenius model. However, again,
actual numerical implementation of the method for realistic mixtures remains as a theoretical possibility
only with some partial results presently available [1].

3 A direct numerical approach

We propose to circumvent the difficulties mentioned above bycompletely abandoning the traditional
approaches to the stability problem. The Laplace transformand the normal-mode methods are sensible
and useful in handling simplified model problems. The small number of parameters that such models
contain affords their systematic study and allows one to getimportant qualitative insight into the nature
of the instability. For example, the computations in [10,17] provided significant information on the role
of the detonation overdrive, the activation energy, and theheat release on the structure of the unstable

2We omit here certain technical details having to do with the choice of the frame reference and the appearance of the shock
position in (3).
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Figure 1: Left− computed spectra for the chain-branching model mechanism of [16]. Right − the
steady structure of the ozone detonation displaying a wide range of spatial scales involved.

spectrum. However, technical difficulties associated withextending these methods to realistic systems
remain prohibitive and motivate the search for alternativemethods.

At present, numerical simulations of the reactive Euler equations can routinely be carried out with
sophisticated and accurate algorithms (even though challenges remain when attempting to make quan-
titative predictions [20]). Somewhat paradoxically, it appears more difficult to solve the linear stability
problem than to perform such nonlinear simulations. Because the numerical computation is a rather
significant part of the linear stability theory in any case, one might argue for using the simulation algo-
rithms to solve the stability problem directly, bypassing the normal-mode decomposition or the Laplace
transform. Of course, as a result, significant amount of computations must be carried out, but despite
such a drawback, the advantages of this approach are clear− it avoids altogether the algorithmic prob-
lems having to do with the computation of the Erpenbeck’s function V (τ) or with the cumbersome
computations required by the normal-mode algorithm.

Previously, such direct (however nonlinear) computationswere carried out in [19] for two-dimensional
idealized detonations. The shock-fitted algorithm presented in [19] is perfectly suited for the direct
solution of the stability problem and is extended in the present work to handle realistic mixtures. In
particular, here we consider the problem of detonation witha model three-step chain-branching chem-
istry [16] as a test case (Fig. (1)-left) and the problem of detonation in ozone with its full reaction
mechanism consisting of three reversible reactions. Our previous calculations of the steady-state deto-
nation structure in ozone reveal its severely multi-scale nature (Fig. (1)-right), which poses a challenge
for numerical algorithms.
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