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1 Introduction 
Deflagration experiments in tubes are usually initiated by a weak source of energy which produces the 
ignition of the reactive mixture in one of the extremes of the channel. At the beginning the flame 
propagates slowly with a velocity that may vary between several centimeters and several meters per 
second. The expansion of the burned gases in presence of obstacles generates turbulence that in turn 
increases the effective burning rate causing an acceleration of the propagation of the flame to sonic 
speed and then to detonation. This transition is very sensitive to small perturbations, for instance, for 
lower reactive mixtures this feedback loop may be countered, or even interrupted, by the tendency of 
the flame to quench due to stretch and heat losses or through momentum losses due to venting. 
The stationary modes of the propagation of a flame in confined obstructed channels can be classified 
as slow sub-sonic, sonic (choked), fast super-sonic and detonations Certainly, most of the previous 
investigations, have devoted a special emphasis to the deflagration to detonation transition (DDT) e.g. 
[1] and [2]. Although for the most important stationary propagation regimes the multiplicity and 
peculiarities have been studied extensively and understood quite well (see e.g. [3]) the transition 
between them is still poorly understood and it represents very complex open problem. 
The transition of the deflagration to fast sonic flames and then to super-sonic flame is in the focus of 
this research. In the current study, flames propagating in obstructed channels ignited from its open end 
are investigated. In such configuration, a prolonged quasi-laminar propagation phase is followed by a 
sudden and violent shockless flame acceleration that culminates when the sonic regime is reached. The 
main mechanism causing this sudden acceleration of flames was, in the opinion of the authors, 
suggested by Brailovsky and Sivashinsky [3] (see also e.g. [4], [5]) who found that the ultimate cause 
triggering the DDT was the hydraulic resistance. Due to friction forces, a quasi-laminar deflagration 
wave cannot reach a stationary regime. Nevertheless, the parameters controlling the de/acceleration 
and the form in which this occurs remains unclear. In order to improve current understanding of the 
phenomenon, the authors have carried out the analysis presented in this article by combining 
experimental, numerical and analytical approaches to the problem. 
 
2 Description of the experiments and the numerical simulations 
 
The experiments were performed in the DRIVER facility [6], which is an obstructed combustion tube 
with a total length of 12.2 m and an internal diameter of 174 mm. Inside the tube, ring shape obstacles 
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were positioned in a regular manner and spaced by a tube diameter accounting for a blockage ratio 
equal to 0.6. A 13% vol. hydrogen-air mixture at ambient conditions was ignited at the open end, 
directly at the interface between the inflammable mixture and the surrounding air. The instrumentation 
included photo diodes and pressure gauges installed along the channel. The venting ratio α of the 
orifice was varied from fully closed to completely open.  
 
Numerical simulations of three significant experiments for venting ratios 0%, 40% and 100%, were 
carried out with the combustion code COM3D [7] in order to provide an enhanced comprehension of 
the test and analyze the mechanism of the flame acceleration in presence of end venting. The 
numerical representation of the problem include the geometry of the tube, the obstacles inside it and a 
supplementary volume with open-non reflective boundary conditions to simulate the release of the 
combustion products through the vent area into an unconfined atmosphere. The supplementary volume 
allows the products of the combustion to be discharged from the tube on an area of the calculation 
domain in order to make the simulations significant. The total volume and time to be simulated restrict 
the minimum resolution achievable to 5.8 mm due to the available computational power. This has 
several implications. Specifically, the Kolmogorov and Taylor turbulent micro-scales, the boundary 
layers and the laminar flame thickness remain unresolved.  
To overcome those restrictions, the KYLCOM combustion model [8], specifically designed for under-
resolved calculations, and the standard k-ε turbulence model [9] was utilized. The combustion model 
was coupled with the turbulent burning velocity correlation proposed by Schmidt et al. [10]. 
The influence of the resolution in the flame and hydrodynamic instabilities requires further 
considerations. Until the flame acceleration takes place, the thermo-diffusive instability plays an 
important role [11]. In open tubes, the quasi-laminar propagation region grows significantly compared 
with closed ones and the effect of flame wrinkling and folding becomes very important. Thus, to 
estimate the increase in burning velocity due to this, the Driscoll’s relation [12], Ξ=Le-1 was utilized, 
where Ξ is the increase in the burning velocity due to thermal-diffusive effects and Le is the Lewis 
number of the mixture. 
 
3 Experimental/numerical results. Analysis of the acceleration mechanism 
 
Figure 1 displays a comparison of the flame propagation obtained from the results of simulations and 
experiments. In the closed channel, the flame accelerates immediately after reaching the first obstacle 
generating an additional flow motion which steepens into the shock wave. The turbulent flow ahead of 
the flame created by the thermal expansion of the products supports the flame acceleration within a 
relatively short time after ignition (~0.1 s). Beyond the run-up distance, of about 1.3 m, the flame 
reaches the sonic regime and propagates further with a steady velocity of 540 m/s (close to the sound 
velocity in the product) and with the characteristic pressure of the leading shock wave oscillates from 
6 to 11 bar. 
In the presence of venting, combustion products are discharged in the atmosphere through the end 
orifice and do not support flame acceleration. Two regions with different propagation regimes, fast 
and slow, can be clearly identified. Initially, the flame propagates in a quasi-laminar regime with a 
stationary velocity of ~3.5 m/s. The experimental records show that during this phase no significant 
pressure increments exist (≈300 Pa) and, therefore, no relevant flow motion (generating turbulence) 
appears ahead of the flame. Nevertheless, around 1 s after the ignition, the flame suddenly accelerates 
from the quasi-laminar to the fast sonic regime within the interval of 3-30 ms (50 ms in the 
calculations). Both in experiments and simulations after the acceleration, the sonic flame propagates 
until the end of tube with a constant velocity of ~540 m/s. 
The reproducibility of the essays was analyzed repeating the test with 40% of venting twice. The 
results of the two experiments show significant divergence of the transition location confirming high 
sensitivity of the transition to the initial conditions. However, the order of magnitude of the transition 
time and location as well as all properties of the transition (initial deflagration velocity, thickness of 
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the sharp acceleration region etc.) remains akin. The discrepancies between different experiments 
should be considered as one of the characteristic inherent to this type of combustion problems. The 
second test for 40% of venting and the experiment with 100% venting almost superpose and the 
acceleration of the process suffers a 40% delay (from ~0.6 s to ~1.0 s after the ignition). Significantly, 
the results of the numerical simulation for 40% of venting appear in the interval between the two 
experimental curves. 
 

0 1 2 3
Time, s

0

4

8

12

Fl
am

e 
po

si
tio

n,
 m

α=0
α=0.4
α=1
Lam. flame
Exp. α=0
Exp. A α=0.4
Exp. B α=0.4
Exp. α=1
Ef. Lam. flam.

 
Figure 1 Flame position. Dashed lines calculations. 
Thin continuous lines with symbols represent the 
experiments while dashed lines the calculations. 
Venting ratio is indicated in the legend. 
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Figure 2 Pressure oscillations near the discharge 
orifice and resistance obtained for the case α=0.4. 
 
 

While the flame penetrates in the tube, the combustion products are discharged into the atmosphere via 
the venting orifice. The propagation of the flame inside the channel implies that combustion products 
should traverse a longer distance until they are discharged suffering an enhanced momentum loss. The 
hydrodynamic resistance was expressed by Brailovsky et al [3], as F=-2cDρu2/d in which cD is the 
drag force coefficient. The results of the numerical experiments carried out with diverse flow 
velocities in the range 1-30 m/s allow approximating cD with the value 0.12. Therefore the total loss of 
momentum can be estimated as ΔP=∫Fdx where integration is taken until the flame front position and 
the opening of the tube. The existence of obstacles increases the complexity in the flow pattern. For 
the propagation of the flame in the laminar regime the obstacles produce a change in the total surface 
of the flame and thus of the total fuel consumption. In first approach this change can be estimated to 
be of the order of (1-BR) being BR the Blockage Ratio. As the obstructions are gradually reached, 
cyclic oscillations in the pressure (order of tens of Pa, peak of ~340 Pa, see Figure 2) as well as in the 
velocity of the discharge products will appear. Those oscillations will have a frequency ω1=�f/d 
where �f is the velocity of the flame front and d is the interval between obstacles, which in this 
problem is equal to the diameter. It is important to underline that no shock waves were developed and 
observed during the entire quasi-laminar regime. 
Figure 2 shows how pressure variations slightly compress and decompress the part of the tube filled by 
the reactants. This area can be understood as a close cylinder, or a drum, in which the flame actuates 
as an oscillating piston. In order to study the compression/decompression cycle of the reactants the one 
dimensional Euler’s equations of continuity and impulse may be used to model the phenomenon. 
Performing cross derivatives on them (in t-x) and operating, the wave equation can be obtained 
supposing the velocity of the oscillations is small and thus the hydrodynamic resistance can be 
neglected. Additionally, by taking into account the observations performed during the numerical 
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experiments, the oscillations inside the reactants resulted to be mainly of the first harmonic. The wave 
equation may thus be simplified to 

( )( )2
0.5 / 0fp c L x pπ+ − =&&         (1) 

where L is the total length of the tube, c is the local sound velocity in the fresh mixture. Therefore a 
second cyclic process with a frequency ω2=c/(4(L-xf)), is present in our system, as can be seen in 
Figure 2. The final pressure signal obtained, are the superposition of the two cyclic processes with 
frequencies ω1 and ω2, and the variable peaks of the registered amplitudes results from this 
superposition. 
The resistance of the products grows linearly (ΔP=∫Fdx=-2cDρu2xf/d) as the flame penetrates inside 
the tube (see Figure 2, thick line (trend)). When the resistance is comparable with the pressure peaks 
created by the flame, the products have difficulties to be discharged and a part of them are 
accumulated inside the tube. The reactants receive an enhanced compression and thus an increased 
compression-decompression cycle is triggered. The flame suffers an additional acceleration and 
traverses an augmented distance per oscillation. Some significant flow appears ahead of the flame. If 
during this displacement an obstacle is overcome, the burning rate will be enlarged by the turbulence 
created by the barrier and the flame starts to burn in the turbulent regime. The burning rate, the 
compression of the reactants and the hydrodynamic resistance are thus enhanced. Next compression-
decompression cycle will drive the flame to a very intense acceleration that will ultimately finish in 
the fast sonic regime.  
The coupling between the described phenomena is complex. The small, but predictable, discrepancies 
between the repeated experiments with 40% of venting (Figure 1) may cause the distinct timing of the 
flame acceleration (i.e. the flame traverse the same length but only one obstacle is trespassed). 
 
4 One dimensional reduced model 
 
The discussion above opens the possibility to use a one dimensional model of the propagation of the 
flame in order to figure out critical parameters and to study the acceleration mechanism. In the 
following a coarse tube is considered to simplify the model and make it treatable analytically, in which 
the effect of the obstacles is taken into account as an enhanced hydrodynamic resistance. Two separate 
regions of the tube are considered for the modeling. In the so-called products region, between the 
flame and the discharge orifice the flow is assumed to be uncompressible. For the reactants, region 
between the flame and the closed end of the tube, the velocity is considered to be small and the term 
u·(grad u) can therefore be neglected during the initial flame acceleration stage. 
With these considerations, the one dimensional equation of the momentum conservation, 
(ρu)t+(ρu2)x+px=F, can be simplified for the region of the products (between the flame and the 
discharge orifice) to be  

.t xu p Fρ + =            (2) 
Taking into account the open end and typical deflagration velocities before the flame acceleration, 
uncompressible flow in the products region can be assumed to the leading order. In the case of 
propagation of the flame in the deflagration laminar regime, and considering the reactants as 
uncompressible, the velocity of the products can be defined as u=-(σ-1)�f with σ expansion ratio. This 
follows from the mass conservation and from definition of the mean flame surface. Integrating 
between the open end of the tube and the position of the flame, under the assumptions made, yeilds 

2 2
0( 1) 2 ( 1) /f f f D f fx x p p c x x dρ σ ρ σ− − + − = − −&& & .     (3) 

This equation contains pf, the pressure at the flame position in the products side, as a free parameter 
that can be closed with the equation (1) obtained in the reactants area. The increment of pressure 
between both sides, in the case of a stationary flame front can be estimated applying Rankine-
Hugoniot conditions Δp≈ρσ(σ-1)�f

2. With the help of this equation, the pressure in the reactants, pf
+ 
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side can be considered. The formulation can be re-written considering over-pressure, P, instead of 
pressure to obtain P=pf

+-σ(σ-1)SL
2-p0. If additionally,  �f(0)=SL then (3) can be cast in the form 

( )( )2 2 2 2( 1) 1 2 ( 1) /f f f L D f fx x P x S c x x dρ σ ρσ σ ρ σ− = − − − + −&& & & .   (4) 

This equation can be coupled with the equation (1) to obtain a closed system. The result of this 
problem, considering as initial conditions t=0, xf(0)=0.1, when walls are reached by the flame with 
velocity �f(0)=SL are shown in Fig. 3. The initial conditions for the pressure were obtained from the 
numerical experiments and where P(0)=0 and �(0)=10 Pa. Although there is a good agreement of the 
results obtained with the one dimensional simplification it has to be underlined that the validity of the 
analysis is restricted to the initiation stage of the flame acceleration. Moreover, significant divergences 
obtained in the reproduction of experiments themselves and of numeric simulations (compare critical 
times shown in Figs. 1 and 3) may then be mathematically expressed through strong dependence of the 
early flame development. 
In order to illustrate this and explain the core mechanism of the flame acceleration let us consider the 
equation (5) without the overpressure term, namely, P(t)=0 is assumed. Thus, 

( )( ) ( )( )2 22 2 1 /f f f L D f fx x x S c x x dσ σ= − − + −&& & & .     (5) 

This equation can be studied in the phase plane by transforming the second order ODE to a plane 
system of ODEs of the first order via regular transformation, v=x, u=� 

( ) ( )2 2, 2 1 /L Dv u u v u S c u v dσ σ= = − − + −& & .     (6) 

The most important observation about the system initial behavior, namely, the role of the system 
isocline of the flame speed equation can be analyzed studying the points ů=0 that naturally fulfill 

( ) ( ) ( )( )( )2 22 1 / 2 1 2 1L D D Du d S c c d vcσ σ σ σ σ= − − − − .    (7) 

Figure 4 right shows this locus with solid black line that near the origin represents a stable attractor, all 
trajectories starting nearby converges (fast) to the lower branch of the isocline and follow the detailed 
solution. Moreover, right after crossing the isocline the system solution trajectories changes the 
character (speeding up instead of decreasing for initial point above the curve), this make the border 
line which is asymptotically given by 

( )( )* / 2 1 0.94f Dx d cσ σ= − = .       (8) 
a very important and crucial property defining the critical behavior. It explains the transition 
phenomena in terms of the phase plane. One clearly sees that if the initial point is on the right from 
this curve v=dσ/(2cD(σ-1)) the vector field demonstrates the exponential increase of the flame speed 
as a function of the flame distance. Additionally, the form of the isocline dependence on the system 
parameters and variables (7) predicts the sensitivity of the critical phenomena on the initial pressure 
perturbation with respect to the time of the transition (critical time equal tf

*=1.24) but the sensitivity is 
much lower with respect to the location of the transition in the space. A weak sensitivity to the 
perturbation of the initial pressure and the form of the critical parameter can be explained in more 
simple way. Namely, in the asymptotic limit considered, the equation (7) physically means that the 
flame starts rapidly accelerating whenever the pressure jump (drop of the pressure - work of the 
pressure force) less or equals to the work of the friction forces, 

( ) ( )( )
*

*

0
( , ) / 2 1fx

f Dp F u t s ds x d cσ σΔ = ⇒ = −∫ .     (9) 

Thus, when the work of the friction force starts dominate, the pressure in the reaction front increases 
triggering the flame acceleration due to the cumulative effect of the pressure diffusion. 
It is very important to note that there no regular singularity (reaching infinity in final time or space as 
a reaction front position) was observed in the solution of the governing equations (6), just very smooth 
(although exponential , i.e. hyper-geometric) growth of the system solution was found to take place. 
This might explain an irregular shockless character of the flame acceleration observed in the 
experiments. 
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Figure 3 Flame position. Comparison of 
calculations experiments and one dimensional 
model. 

 
Figure 4 Phase portrait (x,�)=(v,u) of the reduced 
model is shown with system solution trajectories 
and a vector field. Solid line shows the isoclines of 
the reaction wave speed showing minimal possible 
flame velocity for a given initial state x. Arrows are 
streamlines of the vector field. Dashed line is the 
solution trajectory of the system. 
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