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1 Introduction 
The interaction between pressure waves and the surface of the flame is a feed-back process in which 
the wave intensity and the heat released by the flame influence each other. Markstein [1] concluded 
that coupling between both phenomena was made possible by the variation of the total flame surface 
caused by the pressure changes. The oscillating velocity field created by the waves produces 
oscillations of the amplitude of the cellular structures of the flames. This variation of the surface alters, 
in turn, the total amount of fuel consumed and the heat released by the flame which is proportional to 
the flame area. 
Two different instabilities due to flame - pressure waves interaction have been identified [2]. In the 
acoustic instability (see [2]) the cellular structures of the flame front oscillate with the frequency of the 
acoustic oscillating field. Two effects tend to muffle it. For large wavenumbers, the instability is 
damped by diffusive processes. For small wavenumbers, it is absorbed by the effect of gravity. The 
acoustic instability corresponds, for zero amplitude of the excitation velocity, to the Darrieus-Landau 
planar instability. For increased values of the oscillating velocity [2], the acoustic instability has the 
notable property of being able to stabilize the Darrieus-Landau instability.  
The acoustic instability may develop, for enhanced oscillating velocity, into the parametric instability. 
Under the latter, the growth rate is generally higher than in the acoustic case. The cellular structures of 
the flame oscillate with a frequency half of the acoustic, a fact that was recognized by Markstein as 
the typical property of the Kapitsa parametrically dumped pendulum, who consequently named so the 
instability. 
From the point of view of the severity of an explosion, gaseous mixtures can be classified into two 
kinds [3]: a) If the two instabilities co-exist for some ranges of the amplitude of the acoustic 
perturbation, a planar flame front is never stable and the acoustic instability transform spontaneously 
into the parametric one; b) If they do not co-exist for any range of acoustic velocities, the acoustic 
instability tends to suppress the Darrieus-Landau instability, the parametric instability regime is never 
reached and planar flame fronts are stable as long as the oscillating velocity field exists.  
These two different propagation regimes have been confirmed by the observations of Searby [2] and 
Aldredge and Killingsworth [4] who performed experiments with downwards propagating flames 
inside a cylindrical and an annular burner respectively. It was found that the flame propagation was 
divided into four separate stages: Promptly after ignition, the flame surface quickly became wrinkled 
due to the Darrieus-Landau instability. Then, as the flame propagates further, sound waves started to 
be generated. Due to the fundamental acoustic instability, these acoustic waves caused an attenuation 
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of flame wrinkles. The Darrieus-Landau instability was suppressed and the flame became planar. 
Depending on whether the parametric and the acoustic instability coexist or not, the secondary 
parametric instability may develop producing significant flame acceleration and the appearance of 
large organized pulsating cellular structures. If they do, the final stage of development is characterized 
by those coherent cellular structures transforming into incoherent flame surfaces fluctuations. 
Therefore, gaseous mixtures prone to the parametric instability may suffer, in closed chambers, a very 
significant acceleration of the flame propagation velocity. Especially for lean mixtures, this increase of 
the combustion rate will be very considerable. 
 
2 Analysis 
 
The mathematical treatment of the acoustic and parametric instabilities is based on the work of Pelce 
and Clavin [5], who obtained an equation for a perturbed flame front in a gravitational field under the 
assumptions of high activation energy and large scale wrinkling. Based on those results, Searby and 
Rochwerger [3] managed to derive equations for the growth rate of the acoustic and parametric 
instability and were able to calculate the stability limits for both cases numerically. In such a 
formulation we may consider an infinitely thin flame propagating in vertical direction. The flame front 
is represented by the function F(x,t)=0 in a reference moving with the flame front. Small perturbations 
could be represented in the form F(x,t)=F(t)exp(ikx). With the temporal part F(t)=Y exp(σt) the planar 
flame front will be stable with respect to perturbations for all growth rates fulfilling Re(σ)<0 and 
unstable otherwise. 
Considering the linear stability problem, the second order differential equation (1), [6] describes the 
evolution of perturbations of a flame surface of small amplitude considering periodic monochromatic 
velocity fluctuations normal to the flame front, 

2 2
1 1 2( ) 0,tt L t a a LAF U k BF k g C F k U cos t C F U C Fkω ω+ + − + =    (1) 

for a gas of arbitrary characteristics. In this equation, A, B, C1, C2, are dimensionless coefficients 
which take the form, 

( ) ( ) ( )( )1 1 / 1 / 1 ,A kL Ma Jθ θ θ θ= + − + − −      ( ) ( )2 1 ( ) / 1 ,B kL Ma Jθ θ θ= + − +  (2) 

( ) ( )( )( ) ( )1 1 1 / 1 / 1 ,C kL Ma Jθ θ θ θ= − − − − +       (3) 

( ) ( ) ( )( ) ( )2 1 1 (3 1) 2 2 ( 1) (2 1) / 1 / 1 .bC kL Ma J Prh I Prθ θ θ θ θ θ θ= − − + − − + − − − − +  (4) 
where Ul is the laminar burning velocity, ga the acceleration of gravity, Ua the velocity of the 
oscillating acoustic velocity field, Tu, Tb, ρu, ρb the temperatures and densities of the unburned and 
burned gases. Those coefficients depend on the following one-step Arrhenius reaction parameters of 
the flame, θ=(T-Tu)/(Tb-Tu), γ=(ρu-ρb)/ρu, h(θ)=ρ(θ)χ(θ)/(ρuχu) where χ is the thermal diffusion. 
Additionally, the Markstein number in its Pelce and Clavin [5] definition, is given by 

( ) ( ) ( )
1

0
/ 0.5 1 ( ) ( ) / 1 (1 ) .Ma J Ze Le h ln dγ ϑ ϑ ϑγ γ ϑ= − − + / −∫     (5) 

with the integrals 
1

0
( ( ))bH h h dϑ ϑ= − ,∫ ( ) ( )

1

0
/ 1 ( ) / 1 (1 )J h dγ γ ϑ ϑγ γ ϑ= − + / − ,∫

1

0
( 1) ( ) .I h dθ ϑ ϑ= − ∫  (6) 

Equation (1) may be transformed for a more convenient treatment. The change of variables α=A, 
β=ULkB, ψ=kgaC1+UL

2k2C2 and δ=kωUaC1 allow writing the equation (1) as  
( )( ) 0.tt tF F cos t Fα β ψ δ ω+ + − =        (7) 

whose solution, as stated by Searby and Rochwerger [3], is of the kind 
( ) ,z ikyF Y z e eκ−=           (8)

 where the new variables are defined as z=1/2ωt, κ=β/(ωα), a=4αψ-β2ω2 and q=2δω2α. Substituting 
(8) in (7), a simpler differential equation for the variable Y appears, 
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( )( )2 2 0,Y a qcos z Y′′ + − =          (9) 
which is known as the Mathieu equation. An extensive analysis of the solutions of the Mathieu 
equation may be found i.e. in [7]. Whittaker’s method [8] can be selected to obtain its solutions. The 
methodology considers a solution for the Mathieu equation of the type,  

2
2( ) .i z i kz

k
k

Y z e c eν
+∞

=−∞

= ∑
         (10) 

Substituting this in (9), after some manipulation (details can be found in the references [9] and [10]) it 
is found that to be a solution, the variable υ should fulfill the condition  

( ) 1 (0 , ) 1cos a q k cos aπν π⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −Δ , , −        (11) 

where Δ(0,a,q,k) is the determinant of a (2k+1)x(2k+1) tridiagonal matrix with Δ(0,a,q,k)ii=1, 
Δ(0,a,q,k)i(i-1)= Δ(0,a,q,k)i(i+1)=γ2(k-i) with γ2k=q(2k-υ)2-a. The Sträng method [10] allows calculating 
Δ(0,a,q,k) with the recursion formula, Δ(0,a,q,k)=β2kΔ(0,a,q,k-1)-α2kβ2kΔ(0,a,q,k-2)+  
+α2kα2

2(2k-1) Δ(0,a,q,k-3) with α2k=γ2kγ2(k-1) and β2k=1-α2k and q,a real numbers. This implies that γ2k is 
real for all k natural, so that Δ(υ,a,q,k) is also a real number. Additionally, a is also real and so 
cos(πa1/2)=cosh(π|a|1/2) if a<0 which means that the cosine remains always real. We may nevertheless 
study the solutions of υ, υ=u+wi. Thus, cos(π(u+wi))=cos(πu)cosh(πw)-isin(πu)sinh(πw) and then  
cos(πu)cosh(πw)-isin(πu)sinh(πw)= 1-Δ(0,a,q,k)(1-cos(πa1/2)). From the previous considerations, it is 
possible to separate into real and complex parts to obtain 

( ) ( ) 1 (0 ) 1 , sin( )sinh( ) 0cos u cosh w a q cos a u wπ π π π π⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −Δ , , − = .   (12) 

The solutions of the complex part are u=0+kπ, or w=0. So, υ is purely real or complex. Therefore, the 
solutions of the real part in (12) are, if w=0, u=π-1acos(1- Δ(0,a,q,k)(1-cos(πa1/2))), and if u=0+kπ, 
cosh(πw)=±(1-Δ(0,a,q,k)(1-cos(πa1/2))) and so, w is found to be 

1 1 (0 ) 1 .w acosh a q cos aπ
π

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= ± − Δ , , −

      (13) 
Thus, if |1-Δ(0,a,q,k)(1-cos(πa1/2))|≤1, υ (see eq. (10)) is real, and otherwise complex. Re-calling the 
definition of the solution and substituting (10) in (8) 

2 ( ) ( ) 2
2 2( ) ( ) ,wz iuz i kz z iky w z i uz ky i kz

k k
k k

Y z e e c e F e e Y z e e c eκ κ
+∞ +∞

− − − − +

=−∞ =−∞

= ⇒ = =∑ ∑    (14) 

that is stable in the case –w<κ.  Due to the plus-minus solution of w a necessary condition for the 
stability is that, 

( )1 1 (0 ) 1 / ,w acosh a q cos aκ π π β ωα
⎛ ⎞⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

< ⇒ −Δ , , − <      (15) 

a condition that we anticipate could be used later for an enhanced analysis of  the stability. 
 
3  Particularization for H2-air mixtures in normal conditions 
 
At this point, it would be convenient in order to fix ideas and draw initial conclusions, to particularize 
the equations appearing in the previous section to obtain results for H2-air mixtures at normal 
conditions. Due to the wide flammability limits of hydrogen-air mixtures [11], an evaluation of the 
stability characteristics of this gas with respect to the acoustic and parametric instability is very 
significant. The meaningfulness is accentuated by the fact that the emphasis on the very significant 
investigations that have until now experimentally analyzed the acoustic and parametric instability 
have been dedicated to hydrocarbons, i.e., propane [2] and methane [4][12], and only recently data has 
become available for hydrogen [13]. From the theoretical point of view no monographic study has 
been yet devoted to this gas. Recall that the wide flammability limits of hydrogen-air mixtures leads to 
a range of concentrations of practical interest which covers conditions in which Le<1 Ma<0 (lean) as 
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well as Le>1 Ma>0 (rich) resulting in the widest possible extent (for 7.5% and 60 % vol H2-Air 
mixtures respectively: Ma=-2.6/1.5; Le= 0.3/2.3; Ze=5.5/3.7; UL=0.05/1.8 m/s; flame thickess =        
53 10-5/4.4 10-5 m). 
The frequency of the acoustic perturbation ω is a free parameter of our system. Due to the limited 
space of this extended summary only a single excitation frequency, ω=1000 Hz has been considered 
for the analysis. Figure 1 contains the results of the application of the method for fuel concentrations 
of 7.5, 12.5, 15., 30., 45., 60. vol % H2 at normal conditions The diagrams represent the growth rate in 
a color scale for different combinations of flame surface wavenumbers (abscissa) and reduced 
velocities (ordinate). Only positive growth rates are plotted. The stable regions (pairs (k,Ua/Ul) in 
which the growth rate σ is less than 0) are plotted in violet. Black lines separate stable regions from 
unstable. The diagram corresponding to 7.5% H2 (upper left) shows no separation between the 
acoustic and parametric instability. Inside the figure corresponding to 12.5 % H2 the acoustic 
instability (appears at the bottom left corner, still with a low growth rate) and the parametric 
instability (appearing on the left of the figure) are already clearly identifiable. The plots corresponding 
to 15 and 30 vol % H2 show the appearance of the acoustic instability region with a growing intensity. 
Moreover, they depict a reduction of the overlap between the acoustic and the parametric instability. 
In the picture related to 45 vol % H2, a horizontal stripe free of instability appears for intensities Ua/Ul 
of around 4.5. This band grows with an increased fuel concentration as it is shown in the plot for 60% 
vol H2. The absence of overlapping between both instabilities not only prevents the spontaneous 
developing of the acoustic instability in the parametric one but tends to the suppression of the DL 
instability (as higher Ua/Ul values produce negative growth rates). It is also interesting to underline the 
differences appearing in Figure 1 in the growth rate between the acoustic and the parametric 
instability. These differences are remarkable for lean and rich mixtures where the ratio between them 
reaches two orders of magnitude. 

 
Figure 1. Stability graphs for H2-air mixtures at normal conditions. Excitation frequency of 1000 Hz. From left 
to right and from top to bottom 7.5, 12.5, 15, 30, 45, 60 vol % H2, corresponding to diagrams (a) to (e) 
 
3 Existence of instability for all intensities of acoustic perturbation 
 
The analytic results summarized in the stability condition (15) allow postulating the existence of a 
range of wavenumbers in which the flame surface results to be instable for all intensities of acoustic 
perturbation.  
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The solutions of the stability problem in which the variable κ is negative characterize a significant 
phenomenon. Clearly, the stability condition represented by the equation (15) cannot be fulfilled. As a 
result, these gaseous mixtures are unstable independently of the intensities of the amplitude of the 
perturbation, Ua. Due to this characteristic, the flames in which κ is negative may be prone to couple 
with the perturbations produced by waves, reflections, etc. with adequate frequency suffering 
significant accelerations and increasing its riskiness.  
Let us study the conditions in which κ can be negative, and thus, re-call the definition of 
κ=ULkB(k)/ωA(k). The variables UL, k and ω are always positive. A and B (2) can be positive or 
negative depending on the values of Ma, J, θ, L, and k. The conditions in which sign(A)≠sign(B) 
denote the domain we are looking for (instability). Because of the nature of the integrand in (5), the 
Markstein number can be written as 

( ) ( )
1

0
/ 1 0.5 1 ( ) ( ) / (1 ( 1)) .Ma J Ze Le h ln dθ θ ϑ ϑ ϑ θ ϑ= − + − + −∫     (16) 

Applying (16) to the definitions of A and B, equation (2), and writing in a more convenient form, the 
zeros of A and B, k0A and k0B  can be immediately found to be 

( ) ( ) ( ) ( )
11

0 0
1 0.5 1 ( ) ( ) / 1 ( 1) / 1 ,A L Ze Le h ln dk θ ϑ ϑ ϑ θ ϑ θ

−
⎛ ⎞= − − − + − +⎜ ⎟
⎝ ⎠∫    (17) 

( ) ( ) ( )
1

1 1
0 0 0

( ) / 1 ( 1) 0.5 1 ( ) ( ) / 1 ( 1) ,B L h d Ze Le h ln dk θ ϑ ϑ θ ϑ ϑ ϑ ϑ θ ϑ
−

⎛ ⎞⎛ ⎞= − + − + − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ ∫ (18) 

where the condition k=k0A represents resonance. 
From equations (17) and (18), Le-1<0, results to be a necessary condition for k0A, k0B,to be both 
positive. If Le-1<0 implies k0A positive anyway and two cases are possible k0B also positive or not. In 
any case, for k>k0A the variable A is always negative resulting in unstable conditions for an interval of 
wavenumbers that is henceforth determined. In the former case, in which both k0A, k0B are positive, 
there will exist an interval of wavenumbers, suppose k0A<k0B, in which ∀k∈ (k0A, k0B) the flame is 
unstable. For the latter case, if only k0A is positive, the interval of instability will extend to k∈ (0, 
k0A).or to k∈ (k0A, ∞). This is shown in Figure 2, which contains the particularization of the variables 
k0A, k0B for H2-air mixtures. For mixtures under 21.% vol H2 both k0A, k0B are positive while for richer 
mixtures only k0A is positive. 
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Figure 2. Bands of complete instability for different concentrations for hydrogen-air mixtures under normal 

conditions. 
 
The original formulation of Pelce and Clavin [5] for perturbed flame fronts contains the assumption of 
large scale wrinkling in its derivation. Therefore, the analysis performed here should be restricted to 
wavenumbers k<<2π/L (bellow the horizontal dashed line in Figure 2). For the cases in which both 
k0A, k0B<<2π/L or at least one of them fulfills the inequality, the wavenumber range of instability 
resulting on the form 0<k0A<k<k0B<<2π/L or 0<k0A<k<<2π/L is a characteristic of the gaseous 
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mixture. Particularly, it is independent of the value of the excitation frequency ω. Additionally, κ 
depends inversely on the frequency of the perturbation.  
These findings allow us to re-interpret the information contained in the Figure 1. The upper left (7.5 
vol % H2) diagram, it is represented the situation in which both k=k0B (left) and k=k0A (right, 
resonance) lines are visible (vertical lines). For lean mixtures, the range of instability is centered in 
relatively low wavenumbers making the band completely included in the region with physical sense 
(represented). In the figure corresponding to 12.5 % H2 only a small part of the k=k0B line is visible. 
The resonance lays in higher wavenumbers than the ones shown already in the region k<2π/10L.  
For those gaseous mixtures in which the resonance exists, k0A positive, and has physical significance, 
k0A<<2π/L, it represents a mechanism of instantaneous flame turbulization. The fact that for k=k0A the 
growth rate is infinite suggests, in analogy with Hooke’s Law, the existence of a missing term in the 
derivation of equation (1) that will limit the growth rate and constitute a limitation in the validity of 
the analysis performed. The probability that the resonance lying in the interval (0, 2π/10L) is 
physically meaningful would be enhanced for mixtures with a higher temperature and pressure, as L is 
inversely proportional to these magnitudes. 
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