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1 Introduction
The most distinctive feature of combustion waves is its ability to assume the form of a self-sustained
reaction  wave  propagating  at  a  well-defined  speed.  A  flame  front  or  surface  with  maximal  heat
liberation located within zone of chemical reaction of combustion wave is considered generally as
continuous surface although it can possesses cellular structure in some cases.  Formation of non-planar
cellular structure of flame front is result of development of thermo-diffusive instability. The instability
is most prominent in weak near-limit low-Lewis-number premixtures sensitive to radiative heat losses.
In such systems, the cellular flames often break up into separate cap-like fragments which sometimes
close upon themselves to form seemingly spherical structures called flame-balls [1, 2].
The combustion wave in this case represents an array of separate flame-ball like objects in the state of
permanent chaotic motion. Such combustion wave may be termed as “sporadic combustion wave” to
distinguish its special characteristics differing from conventional continuous flame features. One of
the unusual features of sporadic combustion wave is incomplete burning of fuel which remains in the
combustion products [3]. This incompleteness is caused by fuel leakage through the gaps among the
ball-like flames. The uncertainty in evaluation of total heat release related with incompleteness of
combustion as well as complex spatial-temporary structure of reaction zone create difficulties in
estimation of sporadic combustion wave propagation velocity. The present study is an attempt to
estimate propagation velocity and to distinguish general parameters determining dynamics of sporadic
combustion wave.
To make problem tractable we approximate sporadic combustion wave by planar array of ball-like
flames  (see  Fig.1.).  At  the  next  stage  of  simplification  we  assume  planar  hexagonal  array  of  flame
balls. In this case due to hexagonal symmetry, the problem may be reduced to the description of single
flame ball propagation in the tube with hexagonal cross section. Then the tube with hexagonal cross
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section is approximated by round tube for simplicity. We suppose that propagation velocity of a single
flame  ball  in  the  tube  with  radius  R0 is  close  to  velocity  of  flame  balls  array  with  average  distance
between neighboring flame balls equals to 2R0. The propagation velocity of flame ball arrays in turn
depends on flame ball density that is inversely proportional to R0

2 . Lets assume existence of an
“optimal”  density  of  flame  balls  (optimal  R0) corresponding to maximal propagation velocity and
attribute this value to propagation velocity of sporadic combustion wave. This supposition stems from
the possibility of self-organization of the flame balls collective. Being detached from advanced group,
the trailing flame balls extinguished because of fuel deficiency and they are replaced by new ones
appearing as results of leading flame balls fission.
We assume that propagation velocity of sporadic combustion wave is close to maximal velocity of a
single ball-like flame propagating in the tube. A theoretical estimations of single flame ball
propagating in the tube are given in the next section. We conducted also 2D numerical simulations of
gas combustion in the rectangular channel with different diameters to estimate maximal propagation
velocity of ball-like flame.

2 Mathematical Model
A conventional reaction-diffusion model is employed similar to that applied in paper [4]

,11 CvLeC z  (1)
)()( 2,12,12,1 ThTTv z  (2)

Here T is the scaled temperature in units of Tb, the adiabatic temperature of combustion products; C is
the scaled concentration of the deficient reactant in units of C0, its value in the fresh mixture;  = T0/Tb
where T0 is the fresh mixture temperature; h is nondimensional radiative heat loss parameter and Le is
the Lewis number. The symbols (z, ) denote cylindrical coordinates and symbols (r, ) are radius and
angle in spherical coordinates, correspondingly. The spatial coordinate is measured in units Dth/Ub

2 and
the propagation velocity v is normalized by adiabatic flame speed Ub , where Dth is thermal diffusion
coefficient. Indexes 1,2 correspond to unburned and burned mixtures. SFB in Fig.1 is the flame ball
surface  that  is  assumed  spherical  (r=Rb). ST is  the  tube  walls  surface  ( =R0); Sin and Sout are
correspondingly the tube cross section. Equations (1) and (2) are considered in the cylinder < z
<+ , 0  R0 and subject to the following boundary conditions

Inlet Sin (z ): T1 ; C1=1 (3)

Outlet Sout (z ): T1 ; C1/  =0 (4)

2R0
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Figure 1. Left: Scheme of flame balls planar hexagonal array.   Right: Scheme of flame ball
propagating with velocity v in tube with radius R0.  (Shaded region is unburned mixture).
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     Tube side ST ( =R0 ):  C1 =0, T1 =0       (5)

     Flame ball surface SFB  (r = Rb) :
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T1= T2=TF; C1=0       (6)

Here N is dimensionless activation energy of the chemical reaction.
The equations of (1), (2) can be rewritten in the following equivalent forms:

0)( CLeCvdiv    or 0))(exp( CzvLediv                             (7)

02 2121 z/eT)eT( z
,

z
,     (8)

Here 2/12 )4/(,2/ hvv . The solutions of the equations (1), (2) and equivalent
equations (7), (8) can be written in the form C1=Cb+Cw, T1=T1b+T1w, where Cb , Tb correspond to a
flame ball propagating with constant velocity in free space and Tw,  Cw are solutions describing
distortion of temperature and concentration fields C1b and T1b caused by tube walls. Note that Tw, Cw
have to satisfy of  Eqs. (1), (2) with boundary conditions

/T/T,/C/C bwbw 1111  at the tube side =R0 , C1w=0 as z  and
C1w=C  as z . C   is the concentration of the fuel in the downstream far field. Integrating
over cylindrical volume of the four equations (7), (8) and taking into account boundary conditions (6)
at the flame ball surface one can obtain the following relations:

)C(vRdzCRdS
)(T

Nexp
R

b
FBS

FFB
111

2
2
0

12
0

0

                        (9)

dzCeRdSe
)(T

Nexp
R

bzvLe
FB

)cos(vLeR

S
F

b

FB
0

12
0

11
2

 (10)

dzTeR)(dSe
)(T

Nexp
R

bz
FB

)cos(R

S
F

b

FB
0

12
0111

2
       (11, 12)

Supposing that flame surface temperature TF can be approximated by formula TF=TB+  cos ),  (TB-
) ,  the temperature and concentration distributions in the far field r  >> Rb corresponding to the

flame ball propagating in free space assume the form [4,5]:
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Substituting expressions (13), (14) in equations (9)-(12) one can get the system of four implicit
equations that bound four variable v, Rb, TB  and  . The solutions of these equations are discussed in
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the next section.  Notice that in the limits R0 , v 0, 0 the solutions of Eqs.(9)-(12) are
converted in two equations describing motionless flame ball in free space:
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The solution of Eq.(15) yield dependencies of stationary flame ball radius Rb on heat losses
parameter h evaluated at N=10, = 0.2 that are shown in left side of figure 2.

3 Flame ball propagation velocity
In calculations of Eq.(9-12) we set N=10 and =0.2. The numerical simulations revealed existence of
maximal flame ball propagation velocity that is attained at a critical tube radius R0. In the right side of
figure 2 the dependencies of flame ball propagation velocity v on tube radius R0 are presented. The left
ends of the curves v(R0) correspond to the zeros  residual fuel concentration C   corresponding to the
complete combustion. In the case Le=0.3 and h=0.3, the maximal propagation velocity is attained in
the tube with minimal tube radius determined by condition C   = 0. In other two cases given in figure 2
the maximal flame ball propagation velocities are attained at the points where the residual
concentrations were nonzero. The dependencies of residual concentration C on tube radius R0 are
given  in  the  left  side  of  figure  3.   In  the  cases Le=0.4, h= 0.3 and Le= 0.3, h=0.5 , the flame ball
propagation velocities were maximal at R0 =20 and R0 =11, correspondingly. In this cases the residual
fuel concentrations were respectively C   =0.598 and C   =  0.199.  In  the  right  side  of  figure  3  the
dependencies of flame ball radius on the tube radius R0 are shown. The results of calculations indicate
that in large tubes the increase of tube diameter leads to the decreasing of the flame ball propagation
velocity and to increasing of the flame ball radius. In the limit of R0 >>1 the flame ball radius tend to
the radius of the stationary flame ball in the free space.
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Figure 2. Left: dependencies of heat loss parameter h on flame radius Rb, evaluated
at N=10, s=0.2, Le=0.3
Figure 2. Left: Heat loss h dependencies on flame radius Rb, evaluated at N=10,
 = 0.2, Right: Dependencies of flame ball propagation velocity v on tube radius R0,

evaluated at Le=0.3, h=0.3 (circles), Le=0.3, h=0.5 (crests) and Le= 0.4, h=0.3 (triangles).
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4   Conclusions
The method of evaluation of propagation velocity of a sporadic combustion wave consisted of separate
ball-like flames is proposed. Recent numerical investigations of low-Lewis-number flames
propagating in divergent channel [3] and the presented results demonstrate that sporadic combustion
regime can leads to combustion incompleteness. The propagation velocity of a sporadic combustion
wave consisting of flame balls planar array was analytically estimated by means of developed
analytical method.  The comparison of the analytically obtained flame ball propagation velocities with
data obtained in the course of direct numerical simulations of the flame ball propagating in the tubes
with different diameters will be conducted in future.
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Figure 3. Left: Dependencies of residual fuel concentration C on tube radius R0;
 Right: Dependencies of flame ball radius Rb on tube radius R0, evaluated at Le=0.3, h=0.3
(circles), Le=0.3, h=0.5 (crests) and Le= 0.4, h=0.3 (triangles).


