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1 Introduction

The problem of detonation in systems with heat and momentaseks was, for the fist time, consid-
ered by Zel'dovich in his fundamental paper of 1940 [1]. Thssks were modeled within the one-
dimensional framework for the problem of gaseous detonatia tube. The momentum loss was due
to the friction of the gas with the tube walls and the heat hss to both the work done by the fric-
tion losses and the heat transfer between the gas and thelwglrticular, Zel'dovich estimated the
magnitude of the velocity deficit incurred due to the lossas @rovided a qualitative discussion of the
physical mechanisms for such deficits. It is of relevanceutgpoesent work to also point out that [ [1],
Zel'dovich indicates a possibility of the flow reversal iretheaction zone. That is, in the laboratory
frame of reference, the flow of the gas can, over some regi@pade, be in the direction opposite to
that of the lead shock. Even though such a solution was pesém [1/2], no detailed study of the
conditions or mechanisms has been carried out.

The problem of detonation with losses has been revisitedegjuently by many researchers, includ-
ing Zel'dovich himself with co-workers [8]4], as well as nyanthers [5=8]. The principal theoretical
reasons for revisiting the problem are the difficulties agded with the existence of multiple steady-
state solutions for a given set of parameters, describiagxiplosive mixture and the losses. A natural
question to ask is: Which of these steady solutions occuractige and how are they related to ob-
servations[[B]? This question is, in particular, closelated to that of stability of the possible steady
solutions and remains largely open.

In [3], the authors calculated the effects of heat and moomebsses on the detonation in rough tubes.
The detonation-velocity deficits have been calculated éoesal gaseous mixtures as a function of the
friction factor. Only the high-velocity branch was caldgld. Even though the cases of the flow reversal
were computed, they were not investigated in any detail. é¥@w the authors remark that the convective
heat losses alone were insufficient in causing the flow ralesmce such losses vanish with the velocity.
This observation is in contrast to our present finding thrag, closely related problem, the flow reversal

is possible even if only the convective heat transfer is aotaxd for. We also find that the flow reversal

in our model is impossible in self-sustained detonationemtnly the momentum loss is included.

In modeling such complex flows as the gaseous detonation émaup medium, an important question
is: To what extent is it possible to use a simplified one-disi@mal model? In other words, what are
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the limits of such models? In this work, our goal is to attenepteproduce theoretically the observed
variety of detonation regimes by using a single-step globattion model within the one-dimensional
reactive-flow framework.

2 One-dimensional modeling

We consider the flow of a compressible reacting ideal gas atkem bed of solid particles. The particles
are assumed immobile and non-reacting. Their only role &swrb the momentum and thermal energy
of the detonating gas through friction and heat transferndte, however, that the friction plays a dual
role as it leads to not only the momentum loss, but also targeat he gaseous detonation is described
by a simplified model consisting of the reactive Euler equegtiwith a one-step reactionl — B,
proceeding at the Arrhenius rate= k (1 — \) exp (—E/pv) . Here\ is the reaction-progress variable
(the fraction of the released chemical energy, which gams fx = 0 at the shock to\ = 1 at the end

of the reaction) E is the activation energy is pressurey = 1/p is the specific volumey is density,
andk is the pre-exponential rate factor. The gas internal energyven by the equation of state of a
perfect gaseg; = pv/ (v — 1), where~ is the constant ratio of specific heats. The governing neacti
Euler equations accounting for the losses of momentum aadygm@re

pt + (pu)m =0, 1)
1
e+t =~y — L @
P pe
uf —h
ot ups b = (- ) Qpat (- 1) (222, )
At +udy = w. (4)
Hereu is the gas velocity and is the drag force described by the formulal[10]
f=Asp | b1+ b ulul (5)
— spP 1 Re )

whereA; = 6 (1 — ¢) /d, d is the particle diametetRe = dp|u|/v is the Reynolds number (where
d, = 3(12—f’¢)d), ¢ is the porosity (the fraction of space occupied by the gas),ba, b, are numerical
parameters.

The energy equatiofll(3) contains contributions due to: lieenical energy release (the first term, where
Q is the heat release), the work done by the friction forcess ¢ttond term, involving f), and the heat
transfer between the gas and the particles (the last tewpppgional toh). The heat exchange rate is
assumed to be given by [10]

h = Asas (T —Ty), (6)

where the particle temperature is denotedihyand is assumed to be constant. The gas temperature is
given by the ideal gas laW, = pvW/R, whereR is the universal gas constant aridis the molecular
mass of the gas. The heat conduction coefficienis calculated fromy, = A\yNu/d,, whereNu =

a1 + asRe™ is the Nusselt number. We note that there is some discregdartbg literature as to the
form of the energy equation (cf.I[1/6, 7] Vs [2, 3]). Our foration is similar to that ofi[Z,13].

We assume the Reynolds number to be sufficiently large, sonthaan takeé; = 0.75 andb, = 0.
For the Nusselt number we take = 0, ay = 0.0425, andm = 1. It is important to note that in this
approximation bothf andh are equal to zero whem = 0. While generally speaking, it is incorrect
to assume the vanishing heat conduction in a quiescentlgabidgh gas velocity in the reaction zone
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justifies this assumption. The velocity vanishes, in mosesaonly in the far field, where the reaction
has ended. This is not so in the presence of the flow revershinvthe reaction zone, however, but
then the vanishing af occurs at a single point, so that the corresponding vargstiih at that point is
unlikely to have any appreciable effect on the flow.

In conservation form, the momentum, energy, and the reaetipations can be written as

f

(pu), + (p+ Pu2)x s )
(pe), + (pu (e +pv)), = —% (8)
(PA); + (pul), = pw, )

wheree = ¢; +u?/2 — A\Q = pv/ (v — 1) +u%/2 — AQ. The Rankine-Hugoniot conditions have the
same form as for the ideal case (i.e. the case without laskksig the following rescaling (subscript
a denotes the ambient state):= p/pa, p = p/Pa, U = U/ pa/Par T = x/l1)2, t = t/Pa/Pa/li /2,

E = E/pava, Q = Q/pava, T = TR/pavoW = p/p, D = D+/pa/pa, the governing equations can
be non-dimensionalized. The equations however retain filven wherein the dimensionless loss terms
become (dropping the hats after the rescaling):

l
f=cpplulu, g =6hi(1-9) =7, (10)
— )2 Ul
h=cplul(T—1), cp= 9a2(1¢ oL tl 1c/lz' (11)

Herel, = A\yJW/R\/Papa; lv = v/+\/Pa/ pa ,» @ndly /5 is the half-length of the reaction zone (the distance
from the shock to the point where= 0.5). The dimensionless coefficientg andc,, which are now
just two numbers measuring the effects of the momentum aatllbsses, respectively, depend on the
ratios of various length scales characteristic of the eslewransport processes. kg, it is the ratio

of the length of the reaction zone and the particle diamdter.c;,, it is a non-trivial combination of
four length scales: the viscous scdlg, the thermal scald,, the reaction scal€, /,, and the particle
diameter,d. We note however that, /c; = [1.5a2 (1 — ¢) /bi¢] (I¢/1,), which is independent of the
reaction or the particle diameter.

3 Steady-state structure

In addition to the usual set of parameters of the ideal démmdi.e. E, @, ), we now have two
additional parameters measuring the contributions of tbenentum and heat losses, which affect the
structure of the steady-state solutions. While the litegetontains a number of results in this direction
[1,[3F5]719], a comprehensive study is lacking, especialtign both heat and momentum losses are
present and when the stability question is concerned.

We seek traveling-wave solutions of the governing equatasU = ( pou p oA )T = U (£) where
¢ = x — Dt andD is the detonation velocity. The continuity equation yietddD — u) = p, D, which
is the only conserved quantity in the presence of lossesgdherning equations can be written as

(A — DI)U' = G, (12)
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Figure 1: The domains of existence of the sonic locus in taegbf the Mach numbeb/, = u./c,, and
the sound speed,, at the sonic point: (a) with only the momentum loss and (lihwbth momentum
and heat losses. The boundaries of the shaded regions arelyix,. = 0 and\, = 1.

whereG = ( 0 F G w )T, A is the coefficient matrixI is the unit matrix, and®” = —f/po,
H=(y=1)Qpw+ (y—1) (uf — h) /pp. The acoustic eigenvalues Afares; = u+candsy = u—c,
wherec = \/~p/p is the sound speed. The corresponding left eigenvectorg afe(o, 1, %, 0) and
I, = (0, 1, —%,0). Multiplying (I2) from left by1l;, we obtain(s; — D)(u + %p/) =F+SH

Multiplying by 15, we obtain(s; — D) (u' — %p/) = I — == H. From these equations, it follows that

C C
2u+c—D 2u—c—D’
g Sy o
2cu+c—D 2cu—c—D’

(13)
(14)

We look for solutions of (I13)£(14) that smoothly pass thiwagonic point = &, whereu+c—D =0
andF' + cH/vp = 0. Denote all quantities &t. by a subscript. Then the following two conditions
must be satisfied &t. :

(v =1 e (Qp*w* + Uy fr — h*) _ £ —0, (15)
YD+« ¢ P+®
Up +C — D = 0. (16)

Equation[(Ib) is easy to solve for the detonation speesingc. = \/vp«/px = \/1ps (D — wi) /paD;
its only positive root is theD = 3 (u* +\u2 + 4’yp*> . Equation[(Ib) yields

(17)

+(v—-1)

VP VD« o

A:l—exp(E) P (f*
- PxUx ) ke (7 — 1)Qpx

The problem for the steady-state structure in theariable (obtained from_(13)=(l4) usingf =
u=L 4)) has the following form:

Cx h* - u*f*)

du dp

a =01 (uapa>“ {Dvcfach})v a =92 (uapa>“ {Dvcfach})v (18)
with the initial conditions at the shocky(0) = 2(%;;) andp(0) = 1+ 2<§iﬁ>.

24" ICDERS — July 28 — August 2, 2013 — Taiwan 4



R. Semenko and A. Kasimov Detonation with losses

120\ (@) 12 /\\ (b)
10 \ 10 \
g\ 8
\ p p \ p
4 I 4 e
2 2
\\ u \o\ u
0 — 0 I———— ——
1 10 100 1000 10 1 10 100 1000 104
< &
1.0
/\ o \\ @
0.8 \
D
( p 0.6 S
4 DCJ
\ 04
2
—’——\ — ] 02
0 \ U 0.0
1 10 100 1000 ot 05 0.000 0.005 0010 0.015 0020 0.025 0.030
< ¢

Figure 2: The velocity and pressure profiles when:c(a)- 0.01, ¢;, = 0; (b-c) ¢y = 0.01, ¢;, = 0.01,
(b) corresponds to the upper branch and (c) to the middlechrahD — ¢ curve in (d); (d)D/Dc s vs
cy atey, = 0.01. The red points on the curves in (a-c) indicate the sonicdocu

The solutionsu (M), p (A) of (I8) must be found together with the detonation spPed-or any given
set of parameters (e.gy, c;,), the solutions of((1I8) will satisfy the sonic conditioj+(16) only at
particular values op. Thus one must search fér numerically in order to obtain the complete solution
of the problem. The sonic poigt is of a saddle type, which makes integration from the shoalatd
the end of the reaction zone technically difficult. We therefintegrate from the sonic point both to the
shock and to the point whete= 0, where both the momentum and heat losses vanish and all wnkno
functions inU become constant.

An initial guess foru,, p, is needed to start the integration. Here and in all the coatjouis below, we
usey = 1.2, F = Q = 20, andk = 261.84. If only the momentum losses are present#£ 0, c, = 0),

we find the domain of the possible existence of the sonic @srghown in Fig[J1(a). The shaded area
is bounded by\, = 0 and\, = 1 from (17) and is plotted in terms of the Mach numbBér = w../c.
and the sound speed. Note that the flow velocity at the sonic point can only be fasi This domain

is scanned to find the solutions 6f{17). The computed salytiofiles in¢ variable are shown in Fig.
[2(a). Heres = 0 is the position of the shock ard= —c is the end of the computed region, where
u = 0andX = 1. One notable feature, in contrast to the ideal detonatier,dathe increase of pressure
shortly behind the shock, which is due to the resistanceen$titid particles to the gas expansion.

When both momentum and heat losses are present,i£.0 andc;, # 0, the region in thel/,-c, plane
where a sonic point can exist is significantly more compéidasee Fig.]1(b). The most important new
feature is the appearance of a new region where the pargtdeity at the sonic point can be negative.
That is, around the sonic point there can be a region of flokémiegative direction in the laboratory
frame. Eventually, far from the shock, the flow velocity retuto zero. Such flow reversal is found to be
possible, in this model, only in the presence of heat losSestesponding solution profiles are shown
in Fig.[2(b-c). Behind the sonic point the velocity tends ¢oazat infinity.

By fixing ¢;, = 0.01, we computed the dependence of the detonation velocitywrscsidn of the friction

factor, c¢, as shown in Figl]2(d). The characteristic turning-poirftasor is seen. In experiments, the
top and bottom branches are observed (é.g. [9]), while thddimibranch is not, apparently due to
the latter solution’s instability. The solution profilesogin in Fig. [2(b-c) differ in several important
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respects. The characteristic length scales in the reaetinas are vastly different in the two cases and
so is the behavior a§ — —oo. In both cases, the velocity tends to zerotas» —oc, in (c) going
through the intermediate negative phase, but in[Hig. 2fl)ontrast to (c), the pressure does not tend to
1. This is explained by the fact that the heat loss term hasskadi due to the vanishing velocity. The
present model does not account for conductive heat lossetharefore the gas remains hot in the far
field in this particular case. Apparently, the gas has stdppe fast for the cooling to be able to bring
down the gas temperature to sufficiently low levels.

A.K. would like to thank Dr. Boris Ermolaev of Semenov Ingté of Chemical Physics, Moscow, for
suggesting the problem and helpful discussions.
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