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1 Introduction

The problem of detonation in systems with heat and momentum losses was, for the fist time, consid-
ered by Zel’dovich in his fundamental paper of 1940 [1]. The losses were modeled within the one-
dimensional framework for the problem of gaseous detonation in a tube. The momentum loss was due
to the friction of the gas with the tube walls and the heat lossdue to both the work done by the fric-
tion losses and the heat transfer between the gas and the wall. In particular, Zel’dovich estimated the
magnitude of the velocity deficit incurred due to the losses and provided a qualitative discussion of the
physical mechanisms for such deficits. It is of relevance to our present work to also point out that in [1],
Zel’dovich indicates a possibility of the flow reversal in the reaction zone. That is, in the laboratory
frame of reference, the flow of the gas can, over some region ofspace, be in the direction opposite to
that of the lead shock. Even though such a solution was presented in [1, 2], no detailed study of the
conditions or mechanisms has been carried out.

The problem of detonation with losses has been revisited subsequently by many researchers, includ-
ing Zel’dovich himself with co-workers [3, 4], as well as many others [5–8]. The principal theoretical
reasons for revisiting the problem are the difficulties associated with the existence of multiple steady-
state solutions for a given set of parameters, describing the explosive mixture and the losses. A natural
question to ask is: Which of these steady solutions occur in practice and how are they related to ob-
servations [9]? This question is, in particular, closely related to that of stability of the possible steady
solutions and remains largely open.

In [3], the authors calculated the effects of heat and momentum losses on the detonation in rough tubes.
The detonation-velocity deficits have been calculated for several gaseous mixtures as a function of the
friction factor. Only the high-velocity branch was calculated. Even though the cases of the flow reversal
were computed, they were not investigated in any detail. However, the authors remark that the convective
heat losses alone were insufficient in causing the flow reversal, since such losses vanish with the velocity.
This observation is in contrast to our present finding that, in a closely related problem, the flow reversal
is possible even if only the convective heat transfer is accounted for. We also find that the flow reversal
in our model is impossible in self-sustained detonations when only the momentum loss is included.

In modeling such complex flows as the gaseous detonation in a porous medium, an important question
is: To what extent is it possible to use a simplified one-dimensional model? In other words, what are
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the limits of such models? In this work, our goal is to attemptto reproduce theoretically the observed
variety of detonation regimes by using a single-step globalreaction model within the one-dimensional
reactive-flow framework.

2 One-dimensional modeling

We consider the flow of a compressible reacting ideal gas in a packed bed of solid particles. The particles
are assumed immobile and non-reacting. Their only role is toabsorb the momentum and thermal energy
of the detonating gas through friction and heat transfer. Wenote, however, that the friction plays a dual
role as it leads to not only the momentum loss, but also to heating. The gaseous detonation is described
by a simplified model consisting of the reactive Euler equations with a one-step reaction,A → B,
proceeding at the Arrhenius rate,ω = k (1− λ) exp (−E/pv) . Hereλ is the reaction-progress variable
(the fraction of the released chemical energy, which goes from λ = 0 at the shock toλ = 1 at the end
of the reaction),E is the activation energy,p is pressure,v = 1/ρ is the specific volume,ρ is density,
andk is the pre-exponential rate factor. The gas internal energyis given by the equation of state of a
perfect gas,ei = pv/ (γ − 1) , whereγ is the constant ratio of specific heats. The governing reactive
Euler equations accounting for the losses of momentum and energy are

ρt + (ρu)x = 0, (1)

ut + uux = −1

ρ
px −

f

ρφ
, (2)

pt + upx + γpux = (γ − 1)Qρω + (γ − 1)

(

uf − h

φ

)

, (3)

λt + uλx = ω. (4)

Hereu is the gas velocity andf is the drag force described by the formula [10]

f = Asρ

(

b1 +
b2
Re

)

u|u|, (5)

whereAs = 6 (1− φ) /d, d is the particle diameter,Re = dp|u|/ν is the Reynolds number (where
dp = 2φ

3(1−φ)d), φ is the porosity (the fraction of space occupied by the gas), and b1, b2 are numerical
parameters.

The energy equation (3) contains contributions due to: the chemical energy release (the first term, where
Q is the heat release), the work done by the friction forces (the second term, involvinguf ), and the heat
transfer between the gas and the particles (the last term, proportional toh). The heat exchange rate is
assumed to be given by [10]

h = Asαs (T − Ts) , (6)

where the particle temperature is denoted byTs and is assumed to be constant. The gas temperature is
given by the ideal gas law,T = pvW/R, whereR is the universal gas constant andW is the molecular
mass of the gas. The heat conduction coefficientαs is calculated fromαs = λgNu/dp, whereNu =
a1 + a2Rem is the Nusselt number. We note that there is some discrepancyin the literature as to the
form of the energy equation (cf. [1,6,7] vs [2,3]). Our formulation is similar to that of [2,3].

We assume the Reynolds number to be sufficiently large, so that we can takeb1 = 0.75 andb2 = 0.
For the Nusselt number we takea1 = 0, a2 = 0.0425, andm = 1. It is important to note that in this
approximation bothf andh are equal to zero whenu = 0. While generally speaking, it is incorrect
to assume the vanishing heat conduction in a quiescent gas, the high gas velocity in the reaction zone
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justifies this assumption. The velocity vanishes, in most cases, only in the far field, where the reaction
has ended. This is not so in the presence of the flow reversal within the reaction zone, however, but
then the vanishing ofu occurs at a single point, so that the corresponding vanishing of h at that point is
unlikely to have any appreciable effect on the flow.

In conservation form, the momentum, energy, and the reaction equations can be written as

(ρu)t +
(

p+ ρu2
)

x
= −f

φ
. (7)

(ρe)t + (ρu (e+ pv))x = −h

φ
, (8)

(ρλ)t + (ρuλ)x = ρω, (9)

wheree = ei + u2/2 − λQ = pv/ (γ − 1) + u2/2 − λQ. The Rankine-Hugoniot conditions have the
same form as for the ideal case (i.e. the case without losses). Using the following rescaling (subscript
a denotes the ambient state):ρ̂ = ρ/ρa, p̂ = p/pa, û = u

√

ρa/pa, x̂ = x/l1/2, t̂ = t
√

ρa/pa/l1/2,

Ê = E/pava, Q̂ = Q/pava, T̂ = TR/pavaW = p̂/ρ̂, D̂ = D
√

ρa/pa, the governing equations can
be non-dimensionalized. The equations however retain their form wherein the dimensionless loss terms
become (dropping the hats after the rescaling):

f = cfρ|u|u, cf = 6b1 (1− φ) ·
l1/2

d
, (10)

h = ch|u|(T − 1), ch =
9a2(1− φ)2

φ
·
ltl1/2

lvd
. (11)

Herelt = λgW/R
√
paρa, lv = ν/

√

pa/ρa , andl1/2 is the half-length of the reaction zone (the distance
from the shock to the point whereλ = 0.5). The dimensionless coefficientscf andch, which are now
just two numbers measuring the effects of the momentum and heat losses, respectively, depend on the
ratios of various length scales characteristic of the relevant transport processes. Forcf , it is the ratio
of the length of the reaction zone and the particle diameter.For ch, it is a non-trivial combination of
four length scales: the viscous scale,lv, the thermal scale,lt, the reaction scale,l1/2, and the particle
diameter,d. We note however thatch/cf = [1.5a2 (1− φ) /b1φ] (lt/lv), which is independent of the
reaction or the particle diameter.

3 Steady-state structure

In addition to the usual set of parameters of the ideal detonation (i.e. E, Q, γ), we now have two
additional parameters measuring the contributions of the momentum and heat losses, which affect the
structure of the steady-state solutions. While the literature contains a number of results in this direction
[1, 3–5, 7, 9], a comprehensive study is lacking, especiallywhen both heat and momentum losses are
present and when the stability question is concerned.

We seek traveling-wave solutions of the governing equations asU =
(

ρ u p λ
)T

= U (ξ) where
ξ = x−Dt andD is the detonation velocity. The continuity equation yieldsρ (D − u) = ρaD, which
is the only conserved quantity in the presence of losses. Thegoverning equations can be written as

(A−DI)U′ = G, (12)
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Figure 1: The domains of existence of the sonic locus in the plane of the Mach number,M∗ = u∗/c∗, and
the sound speed,c∗, at the sonic point: (a) with only the momentum loss and (b) with both momentum
and heat losses. The boundaries of the shaded regions are given byλ∗ = 0 andλ∗ = 1.

whereG =
(

0 F G ω
)T

, A is the coefficient matrix,I is the unit matrix, andF = −f/ρφ,
H = (γ−1)Qρω+(γ−1) (uf − h) /ρφ. The acoustic eigenvalues ofA ares1 = u+c ands2 = u−c,

wherec =
√

γp/ρ is the sound speed. The corresponding left eigenvectors arel1 =
(

0, 1, c
γp , 0

)

and

l2 =
(

0, 1,− c
γp , 0

)

. Multiplying (12) from left by l1, we obtain(s1 − D)(u′ + c
γpp

′) = F + c
γpH.

Multiplying by l2, we obtain(s2 −D)(u′ − c
γpp

′) = F − c
γpH. From these equations, it follows that

u′ =
1

2

F + c
γpH

u+ c−D
+

1

2

F − c
γpH

u− c−D
, (13)

p′ =
γp

2c

F + c
γpH

u+ c−D
− γp

2c

F − c
γpH

u− c−D
. (14)

We look for solutions of (13)–(14) that smoothly pass through a sonic point,ξ = ξ∗, whereu+c−D = 0
andF + cH/γp = 0. Denote all quantities atξ∗ by a subscript∗. Then the following two conditions
must be satisfied atξ∗ :

(γ − 1) c∗
γp∗

(

Qρ∗ω∗ +
u∗f∗ − h∗

φ

)

− f∗
ρ∗φ

= 0, (15)

u∗ + c∗ −D = 0. (16)

Equation (16) is easy to solve for the detonation speedD usingc∗ =
√

γp∗/ρ∗ =
√

γp∗ (D − u∗) /ρaD;

its only positive root is thenD = 1
2

(

u∗ +
√

u2
∗
+ 4γp∗

)

. Equation (15) yields

λ∗ = 1− exp

(

E

p∗v∗

)

γp∗
kc∗(γ − 1)Qρ∗

(

f∗
γρ∗

+ (γ − 1)
c∗
γp∗

h∗ − u∗f∗
φ

)

. (17)

The problem for the steady-state structure in theλ variable (obtained from (13)–(14) usingdξ =
u−D
ω dλ) has the following form:

du

dλ
= g1 (u, p, λ; {D, cf , ch}) ,

dp

dλ
= g2 (u, p, λ; {D, cf , ch}) , (18)

with the initial conditions at the shock,u(0) = 2(D2
−γ)

(γ+1)D andp(0) = 1 + 2(D2
−γ)

γ+1 .
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Figure 2: The velocity and pressure profiles when: (a)cf = 0.01, ch = 0; (b-c) cf = 0.01, ch = 0.01;
(b) corresponds to the upper branch and (c) to the middle branch ofD− cf curve in (d); (d)D/DCJ vs
cf at ch = 0.01. The red points on the curves in (a-c) indicate the sonic locus.

The solutionsu (λ), p (λ) of (18) must be found together with the detonation speedD. For any given
set of parameters (e.g.cf , ch), the solutions of (18) will satisfy the sonic conditions (15)–(16) only at
particular values ofD. Thus one must search forD numerically in order to obtain the complete solution
of the problem. The sonic pointξ∗ is of a saddle type, which makes integration from the shock toward
the end of the reaction zone technically difficult. We therefore integrate from the sonic point both to the
shock and to the point whereu = 0, where both the momentum and heat losses vanish and all unknown
functions inU become constant.

An initial guess foru∗, p∗ is needed to start the integration. Here and in all the computations below, we
useγ = 1.2, E = Q = 20, andk = 261.84. If only the momentum losses are present (cf 6= 0, ch = 0),
we find the domain of the possible existence of the sonic pointas shown in Fig. 1(a). The shaded area
is bounded byλ∗ = 0 andλ∗ = 1 from (17) and is plotted in terms of the Mach numberM∗ = u∗/c∗
and the sound speedc∗. Note that the flow velocity at the sonic point can only be positive. This domain
is scanned to find the solutions of (17). The computed solution profiles inξ variable are shown in Fig.
2(a). Hereξ = 0 is the position of the shock andξ = −∞ is the end of the computed region, where
u = 0 andλ = 1. One notable feature, in contrast to the ideal detonation case, is the increase of pressure
shortly behind the shock, which is due to the resistance of the solid particles to the gas expansion.

When both momentum and heat losses are present, i.e.cf 6= 0 andch 6= 0, the region in theM∗-c∗ plane
where a sonic point can exist is significantly more complicated, see Fig. 1(b). The most important new
feature is the appearance of a new region where the particle velocity at the sonic point can be negative.
That is, around the sonic point there can be a region of flow in the negative direction in the laboratory
frame. Eventually, far from the shock, the flow velocity returns to zero. Such flow reversal is found to be
possible, in this model, only in the presence of heat losses.Corresponding solution profiles are shown
in Fig. 2(b-c). Behind the sonic point the velocity tends to zero at infinity.

By fixing ch = 0.01, we computed the dependence of the detonation velocity as a function of the friction
factor,cf , as shown in Fig. 2(d). The characteristic turning-point behavior is seen. In experiments, the
top and bottom branches are observed (e.g. [9]), while the middle branch is not, apparently due to
the latter solution’s instability. The solution profiles shown in Fig. 2(b-c) differ in several important
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respects. The characteristic length scales in the reactionzones are vastly different in the two cases and
so is the behavior asξ → −∞. In both cases, the velocity tends to zero asξ → −∞, in (c) going
through the intermediate negative phase, but in Fig. 2(b), in contrast to (c), the pressure does not tend to
1. This is explained by the fact that the heat loss term has vanished due to the vanishing velocity. The
present model does not account for conductive heat losses and therefore the gas remains hot in the far
field in this particular case. Apparently, the gas has stopped too fast for the cooling to be able to bring
down the gas temperature to sufficiently low levels.

A.K. would like to thank Dr. Boris Ermolaev of Semenov Institute of Chemical Physics, Moscow, for
suggesting the problem and helpful discussions.
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