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1 Introduction

In a recent publication [1] we examined the propagation of a premixed flame in a long narrow chan-
nel, open at both ends and exposed to atmospheric pressure. The gas expansion that results from the
heat released by the chemical reactions produces a continuous flow of burned gas directed towards the
ignition end and sets a pressure gradient that drives the fresh unburned gas towards the other end of
the channel. As a result, the flame accelerates when traveling throughout the channel consistent with
the early observations of Mason & Wheeler [2]. The adopted simplifications in [1] enabled extracting
simple results about the flame position and the overall travel time within the channel. In this work the
narrow channel assumption is removed and the two-dimensional problem is considered numerically in
order to examine the effect of the channel’s width on the propagation.

1 Formulation

A combustible mixture is contained in a channel of lengthL and width h, and ignited at time t = 0 at the
left end of the channel; i.e., at x = 0. Upon ignition the diaphragms containing the mixture in the chan-
nel are simultaneously removed, and both ends remain open and exposed to a constant (atmospheric)
pressure. Of particular interest is to examine the subsequent propagation in sufficiently long channels
as a function of the aspect ratio. For simplicity, we consider here the adiabatic case only, leaving the
influences of heat loss through the walls to future studies.
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Figure 1: Sketch of the channel configuration, illustrating the various length scales associated with the flame
propagation problem
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The combustible mixture is considered to undergo a chemical reaction described by a global irreversible
step of the form F + O → P , where F denotes the fuel, O the oxidizer and P the products. Assuming
the mixture is lean in fuel, the oxidizer mass fraction is nearly constant during combustion and the
reaction rate depends solely on the fuel mass fraction. It is characterized by a global activation energy
E and a pre-exponential factor B that contains the (constant) oxidizer’s concentration.

We introduce dimensionless variables using the state of the fresh mixture (identified by the subscript
u) as reference: ρu for density, Tu for temperature, pu for the pressure, and Yu for the (fuel) mass
fraction. If the speed SL and thermal thickness δT of a planar adiabatic flame are used as reference,
and the residence time δT /SL is used as a unit of time, the governing equations (in dimensionless form)
become:

ρt + (ρ u)x + (ρ v)y = 0, (1)

ρ(ut + uux + vuy) = −px + Pr
[
uyy +

4
3uxx +

1
3vxy

]
(2)

ρ(vt + uvx + vvy) = −py + Pr
[
4
3vyy +

1
3uxy + vxx

]
(3)

ρ(θt + uθx + vθx)− (θxx + θyy) = ω (4)

ρ(Yt + uYx + vYy)− Le−1(Yxx + Yyy) = −ω (5)

ρ = 1/(1 + γθ) (6)

where x, y are respectively the longitudinal and transverse coordinates (see Fig. 1), and u, v the cor-
responding velocity components; subscripts denote partial differentiation. In these equations p is the
pressure deviation from the ambient (atmospheric) pressure pu which, in view of the low Mach number
approximation adopted here, is constant to leading order and therefore does not appear explicitly in the
equation of state (6). The variable θ is the deviation of the temperature from its ambient value normal-
ized by Ta−Tu, where Ta = Tu + QYu /cp is the adiabatic flame temperature with Q is the total heat
release and cp the specific heat (at constant pressure) of the mixture. The thermal thickness of the flame
is given by δT =DT /SL, where DT is the thermal diffusivity of the mixture. The parameters appearing
in these equations:- the heat release parameter γ = (Ta−Tu)/Tu, the Prandtl number Pr = ν/DT rep-
resenting the ratio of the viscous to thermal diffusivities of the mixture (with ν the kinematic viscosity),
and the Lewis number Le = DT /DF representing the ratio of the thermal diffusivity of the mixture to
the mass diffusivity of the fuel DF , are all assumed constant.

The reaction rate ω takes the form

ω(θ, Y ) =
β2

2s2LLe

(
1 + γ

1 + γθ

)2
Y exp

{
β(θ − 1)

(1 + γθ)/(γ + 1)

}
. (7)

where β = E(Ta−Tu)/RT 2
a is the Zel’dovich number and ρ

b
= ρuTu/Ta is the density of the burned

gas. Since for any finite β the laminar flame speed needs to be computed numerically, we have intro-
duced, for convenience, the corresponding asymptotic expression

(SL)asp =
√
2LeBρuDT /β2 (ρ

b
/ρu) e

−E/2RTa ,

valid for β � 1 and the adjustment factor sL = SL/(SL)asp . For a finite value of the Zel’dovich number
β and given γ and Le, the factor sL is determined numerically as the eigenvalue of an appropriate
boundary-value problem [1]. The values of sL for β = 10 and Le = 1 are 1.0652, 1.0588 and 1.0548
for γ = 3, 4 and 5, respectively.

The system of equations (1)-(6) are considered in the domain 0 < x < ` and 0 < y < a, where
` = L/δT and a = h/δT are the channel length and width measured in units of the flame thickness δT .
At the channel walls we assume no-slip and adiabatic conditions, so that

u = v = ∂θ/∂y = ∂Y/∂y = 0, at y = 0, a for 0 < x < `. (8)
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It is also assumed, for simplicity, that the state of the mixture at both ends is uniform and the flow
remains parallel to the walls; i.e.,

∂θ/∂x = ∂Y/∂x = v = ∂u/∂x = 0, at x = 0, ` for 0 < y < a. (9)

The latter are invariably the appropriate conditions for instants when the flame is sufficiently far from the
ends of the channel. The modifications required when the flame is within a close distance ∼ O(a) from
either end would, for sufficiently long channels, have a small and negligible effect on the entire prop-
agation time. Since following ignition the channel remains open, the pressure at both ends is constant
and equal to the ambient pressure, so that

p = 0 at x = 0, `, for 0 < y < a . (10)

This is consistent with conditions (9) that imply that the pressure variations across the channel at both
ends are negligible.

2 Numerical procedure

It is advantageous for numerical calculations to eliminate the pressure from the momentum equations
by introducing the vorticity, ζ = vx − uy, which satisfies

ρζt + ρuζx + ρvζy = Pr(ζxx + ζyy) + J (11)

with J (the vorticity production) given by

J = (ρyut − ρxvt) +
[
(ρu)yux − (ρu)xvx

]
+
[
(ρv)yuy − (ρv)xvy

]
,

and express the velocity field as the sum of irrotational and solenoidal components

u = ψy + φx, v = −ψx + φy (12)

by virtue of Helmholtz decomposition theorem. The divergence-free part has been expressed in terms
of a stream-like function ψ and the irrotational part in terms of a potential φ. The combined mass and
energy equations (1) and (4) yield an alternative form for the continuity equation, or an equation for the
potential φ, in the form

φxx + φyy = γ
[
θxx + θyy + ω

]
. (13)

The stream-like function is readily seen to satisfy

ψxx + ψyy = −ζ. (14)

The problem then reduces to solving equations (11), (13)-(14) and (4)-(5) for ζ, θ, Y, φ and ψ, with
ρ given (6). The velocity components are obtained a-posteriori from (12), and the pressure from the
momentum equations (2)-(3).

The equations were solved numerically in the domain 0<x<` and 0<y<a/2, by imposing symmetry
boundary condition at the centerline, namely

ψ = 0, ∂φ/∂y = 0, ζ = 0 at y = a/2 . (15)

The remaining boundary conditions, deduced from (8)-(10), are

ψ = 0, ∂φ/∂y = 0, ∂ψ/∂y = −∂φ/∂x at y = 0 (16)

∂ψ/∂x = ∂2φ/∂x2 = 0 at x = 0 . (17)
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We note parenthetically that evaluating the x-momentum equation (2) along the wall y = 0 implies that

px = Pr (−ζy + 4
3vxy) (18)

which, when integrated along the channel and using conditions (9)-(10) yields

`∫
0

∂ζ/∂y
∣∣
y=0

dx = 0 . (19)

This relation represents the constraint on the velocity field imposed by holding the pressure constant
at both ends of the channel. This condition serves resolving the indeterminacy in the determination of
the potential φ which, by definition, is up to a linear additive of the form φ + Ax. The constraint (19)
determines the constant A uniquely.

The initial conditions we have adopted are in the form of a hot spot placed near the left end of the
channel, x = 0, in a fluid at rest and in a uniform state (uniform distribution for the mass fraction
and density). The position of the flame front xf (t) was defined as the location where the reaction
rate ω reaches its maximum value along the mid-plane; the corresponding propagation speed ẋf was
subsequently determined as its time derivative.

3 Results

Figure 2 displays the main result of this study showing the propagation speed as a function of time for
different channel lengths and widths. The abscissa t̂ = t/` represents the (dimensional) time in units of
L/SL, namely in units of the travel time of a planar adiabatic flame throughout the same channel. The
same representation was used in our previous study [1], which was limited to narrow channels (a� 1).

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

0 0.1 0.2 0.3 0.40

5

10

15

20

25

30

a=10, l=200

a=5

a=10, l=250

t/l

xf
.

a=10, l=150

Figure 2: The flame propagation speed as a function of time for various channel lengths ` and widths a.
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The results show that the channel width has a significant effect on flame dynamic. For a channel of
width a = 5, the calculated propagation speed is shown for the two values ` = 100 (solid line) and
` = 150 (points identified by circles). The dashed curve, plotted for ` = 100, is based on the analytical
expression

ẋf =
(
1 +

γ

`

)
eγt/` (20)

obtained in [1] under the assumption that a � 1. Hence, for width comparable to the laminar flame
thickness, typically 5δT−6δT , the propagation speed increases monotonically and for sufficiently long
channels the dependence of ẋf on the scaled time t̂ tends to a universal curve that is well approximated
by equ. (20). Note that for a = 5 the flame acceleration is only slightly larger than the value predicted
by the asymptotic expression (20). Figure 3 shows the pressure distribution along the channel walls at
various times, for a = 5, ` = 100, calculated a-posteriori from (18) after having determined the induced
velocity field. The result is indeed consistent with our earlier predictions [1] obtained for a� 1.

The propagation speed changes drastically in wider channels. The graphs in fig. 2 show the propagation
speed calculated for a = 10 and various values of `. During the early stages the behavior remains
nearly universal with the dependence of the propagation speed ẋf on t̂ still approximated by the narrow-
channel result (20); the small variations due to the ignition event seen for small t disappear very soon
thereafter. Beyond a certain time, however, the flame undergoes a sudden rapid acceleration with the
propagation speed increasing ten-folds before reaching the end of the channel. The sudden change in
propagation speed occurs earlier in the longer channels. It is associated with a change from a nearly-
planar to a highly curved flame as seen in Fig. 5. Shown in figures 4 and 5 are flame shape and location
at various instants during the propagation in a channel (i) of width a = 5 and length ` = 100, and (ii)
of width a = 10 and length ` = 200. The flame in these figures is identified by the spread of constant
level curves of the reaction rate ω. We observe that in narrow channels the flame remains nearly planar
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Figure 3: Representative pressure distribution along the channel wall at different times; calculated for a channel
of width a = 5 and length ` = 100.
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during the entire propagation, while in wider channels it changes dramatically to a highly curved flame
convex towards the unburned gas. The sudden increase in propagation speed is clearly associated with
the increase in flame surface area.
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Figure 4: Instantaneous images of the flame, characterized by reaction-rate contours, during propagation in a
channel of width a = 5 and length ` = 100.
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Figure 5: Instantaneous images of the flame, characterized by reaction-rate contours, during propagation in a
channel of widtha = 10 and length ` = 200.

4 Conclusions

The dynamics of premixed flames propagating in long two-dimensional adiabatic channels open at both
ends and exposed to atmospheric pressure have been studied numerically by fully accounting for thermal
expansion resulting from the heat released during combustion. The gas expansion drives a continuous
flow of hot burned gas towards the ignition end of the channel that sets as a result of viscous drag at
the rigid walls a pressure gradient that enhances the flow of burned gas and simultaneously drives the
fresh mixture ahead of the flame towards the other end of the channel, which remains at atmospheric
pressure. As a result, the flame accelerates when traveling down the channel. In narrow channels, on
the order of the flame thickness, the acceleration is found to be nearly constant. When the channel
height is an order of magnitude larger than the flame thickness, the initial propagation speed increases
linearly following the behavior observed in narrow channels, but changes rapidly as the flame becomes
highly curved, to an exponential-like behavior associated with the Increased flame surface area. The
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dramatic increase in propagation speed results in channels of any length provided the far end of the
channel remains open and the ambient held at a constant pressure. Indeed, heat losses towards the cold
ambient, not considered here, will modify the flame behavior and propagation speed at distances of the
order of the flame thickness of the end of the tube. Effects not considered here include the occurrence of
non axisymmetric modes of propagation and the possible development of instabilities, such as Rayleigh-
Taylor, associated with the acceleration of the flame surface into a denser fluid.
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