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1 Introduction

In a recent paper [1], we have shown that a very simple model iscapable of qualitatively reproducing
the whole range of phenomena that one observes in one-dimensional detonations in the reactive Euler
equations. The model is given by the following equation:

ut +
1

2

(

u2 − uus
)

x
= f (x, us) , x ≤ 0, t > 0, (1)

whereu (x, t) is the unknown playing the role of, say, pressure or temperature, us = u (0−, t) is the
solutionu immediately after the shock (located atx = 0), andf is the forcing function. The left-hand
side of this equation arises from the Burgers equation by attaching the frame of reference to the shock.
The forcing function on the right-hand side is taken to mimicthe behavior of reaction rate in the Euler
equations. In particular, strong sensitivity off to the shock state,us, is its main feature. Furthermore,
f is assumed to have a maximum at some distance away from the shock, xf = xf (us), which depends
on the shock state. Ifus is large, the maximum is near the shock, while for smallus the maximum is far
from the shock.

As shown in [1], the computation of the steady-state solutions of (1) is exactly analogous to the ZND
theory, i.e. the reaction-zone structure is completely determined by solving an ordinary differential
equation that is required to match the shock conditions atx = 0 as well as the Chapman-Jouguet
conditions at the sonic point. Moreover, the model also predicts that the steady-state solutions become
unstable when the source functionf is sufficiently sensitive to the shock state. Numerical solutions of
(1) demonstrate the existence of a Hopf bifurcation and a subsequent period-doubling cascade that leads
to chaos in precise analogy to pulsating detonations in the Euler equations.

The model (1) is deceptively simple and appears to be an analog model akin to that of Fickett [2].
However, it can be shown that (1) is a consequence of the theoretical model derived by Rosales and
Majda from the reactive Euler equations [3]. To establish the connection, one has to make certain
simplifying assumptions to derive (1) from that theory. Themost significant of these is that the rate of
chemical reaction is assumed to be a function of the reactionprogress variable and the shock state only.
Even though this assumption results in a certain loss of generality, the resulting simplification of the
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model is remarkable−it yields a single scalar partial differential equation that qualitatively retains most
of the complexity of detonations in the reactive Euler equations. The equation is, however, non-local
through the presence in the equation of the shock stateus of the unknownu. The solutionu (x, t) at
any given timet at any locationx depends on the shock state,us (t), at that time. This non-locality is
a result of taking to an extreme the asymptotic idea that the waves reflecting from the shock propagate
much faster than the waves moving toward the shock from the reaction zone.

A simple extension of the model by Fickett has originally been shown to reproduce the rich dynamics
of unstable detonations by Radulescu and Tang [4]. These authors have also analyzed the problem of
detonation ignition by a piston and elucidated the role of the ratio between the reaction-zone length and
the induction-zone length in the ignition dynamics [5]. Thanks to the qualitative agreement with the
detonation solutions of the full Euler equations, our modeland that of [4] serve to indicate strongly that
the mechanism for the complex dynamics of detonation instability might in fact be simple. Namely, for
our model, that a non-linear interplay between the slow waves propagating along the forward character-
istics of the Euler equations and the fast waves reflecting off the shock, may be the main reason for the
instability. These latter waves are treated in (1) as propagating at an infinite speed.

In this paper, we consider an extension of (1) to model radially diverging detonations. We analyze the
spherical case, but the cylindrical case is similar. Our goal is to explore the role of shock curvature in
the solution and a possibility of the initiation vs failure behavior akin to that in the Euler detonations
(e.g. [6]). Equation (1) written in the laboratory frame, takes the form

uτ +

(

u2

2

)

ξ

=

{

f (ξ − ξs (τ) , u (ξs (τ) , τ)) , ξ < ξs (τ) ,

0, ξ > ξs (τ) ,
(2)

whereτ = t, ξ = x + ξs (t), andξ = ξs (t) is the shock path in the laboratory frame. The shock in
this model is located atx = 0 with the jump condition giving the shock speed asD = us/2, when
the upstream-state is assumed to beua = 0. Indeed, the Rankine-Hugoniot condition is given by
−D [u] + 1

2

[

u2
]

= 0, where[z] = z+ − z− is the jump ofz across the shock. Withu+ = ua and
u− = us, we find thatD = 1

2
(us + ua) =

1

2
us. An extension of (1) to spherical geometry is achieved

by replacing the divergence term
(

u2/2
)

ξ
in (2) by its form in spherical coordinates,1

ξ2

(

ξ2u2/2
)

ξ
=

(

u2/2
)

ξ
+ u2/ξ. Then the shock-frame version of (1) for diverging detonations becomes

ut +
1

2

(

u2 − uus
)

x
= f (x, us)−

u2

x+ rs (t)
, x ≤ 0, t > 0, (3)

wherers (t) denotes the shock radius, which is related to the shock stateasdrs/dt = D = us/2. Thus
the flow divergence acts as an energy sink competing with the forcing termf . As we show below,
similarly to the Euler equations, (3) predicts quasi-steady solutions with turning points in the plane of
us vs rs. In addition, (3) possesses pulsating solutions, as in the planar case, however now affected by
curvature.

In the remainder of this paper, we explore (3) with the purpose of demonstrating the role of curvature,
1/rs, in the dynamics of its solutions. We should note here that Fickett had previously considered the
flow divergence in his analog model [7], and demonstrated thedecrease of detonation velocity with flow
divergence. However, his geometric term was quite different from ours, in addition to other differences
between our models.

2 Quasi-steady solution

In this section, we look for quasi-steady solutions of (3), wherein the time derivative is assumed to be
zero. Strictly speaking, the equation does not have steady-state solutions for a simple reason−as the
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Figure 1: (a) Quasi-steadyus − κ curves atβ = 0.1 fixed and variableα. (b) The quasi-steady solution
profilesu0 (x) on the top and the bottom branches of theus − κ curve in (a) atα = 1 andκ = 0.1.

shock evolves, its radius,rs, necessarily changes in time and therefore, so doesus and henceu (x, t).
Nevertheless, one can look for quasi-steady solutions by assuming that such variations ofrs in time are
negligible so that at any given time, the solution structureadjusts instantaneously to the change ofrs.
This asymptotic idea is precisely the main assumption in theweak-curvature theory of slowly evolving
detonations (i.e. the Detonation Shock Dynamics, [8,9]).

Whenut is dropped, (3) can be written as

du0
dx

=
f (x, us)− κu20/ (1 + κx)

u0 − us/2
, (4)

whereκ = 1/rs is the mean curvature of the shock. This equation must be solved subject tou0 (0) = us
and to some condition atx = −rs, i.e. atr = 0. Notice that, as usual in detonation theory, there is a
possibility of a Chapman-Jouguet (i.e. self-sustained) solution when there exists a sonic point,x = x∗,
where both the numerator and the denominator of (4) vanish, i.e.

f (x∗, us)−
κu2

∗

1 + κx∗
= 0, u∗ −

us
2

= 0. (5)

The solutionu∗ at the sonic point is obtained, for any givenus andκ, by solving (4) fromx = 0, where
u0 = us to x = x∗, whereu0 = u∗. Therefore,u∗ = u0 (x∗;us, κ), and hence (5) is a system of two
equations with three unknowns:x∗, κ, andus. By eliminatingx∗, one obtains a relationship between
us andκ, exactly analogous to the well-knownD − κ relation in the detonation theory [9]. The actual
numerical computation of theus−κ relation is a bit involved due to the saddle-point nature of the sonic
point, but it can be done.

To perform specific calculations further below, we choose the same forcing functionf as in [1],

f =
a

√
4πβ

exp

[

−
(x+ u−α

s )
2

4β

]

, (6)

except nowa =
[

4
(

1 + erf
(

u−α
s /2

√
β
))]

−1
to make sure thatf always integrates to the same constant.

In this particular form, the model is dimensionless withu scaled so thatus = 1 in the steady planar state
(see [1] for details). The parametersα andβ in (6) measure the sensitivity off to the shock state
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Figure 2: Initiation and failure of: (a) stable solutions atα = 3.9 and (b) unstable solutions atα = 4.5.
In both figuresβ = 0.1, the computational domain lengthL = 103, andN = 104 grid points used.

and the width off , respectively. They are analogous to the activation energy(α) and the ratio of the
reaction-zone length to the induction-zone length (β) in the Euler equations.

In Fig. (1)(a), we show the dependence ofus onκ for various values ofα atβ = 0.1. The usual turning-
point behavior is seen with the turning-point curvature decreasing asα is increased. This is similar to
that in Euler detonations wherein the activation energy leads to the same effects [8, 9]. One important
difference is that in Fig. (1)(a) there are only two branches, the lower branch tending tous = 0 and
κ = 0, while in the Euler equations, there are in general three branches, the lower branch tending to
D = ca, the ambient sound speed, andκ → ∞. In Fig. (1)(b), we also show the solution profiles that
correspond to theus−κ curves in Fig. (1)(a) at a particular value ofκ = 0.1, but at two different values
of us, one on the upper branch and one on the lower. A notable feature of these profiles is the existence
of an internal maximum ofu, which is absent in the planar solution at the same parameters.

3 Unsteady numerical simulations

In order to better understand the role of the curvature term in (3), we solve the problem analogous to that
of the direct initiation of gaseous detonation. In the laboratory frame of reference, (3) takes the form

ut +

(

u2

2

)

r

= −
u2

r
+

{

f (r − rs (t) , u (rs (t) , t)) , r < rs (t) ,

0, r > rs (t) .
(7)

We solve this equation numerically using a fifth-order WENO algorithm and the initial conditions cor-
responding to a localized source of the type

u (x, 0) =

{

ui, 0 < r ≤ ri,

0, r > ri.

Hereri is the radius of the initial hot spot,ui is its “temperature”. By analogy with the point-blast
initiation, we keepri fixed at some small value and varyui, which is a measure of the source energy.
Our findings are displayed in Fig. (2). We select two sets of parameters forα andβ such that one
corresponds to a stable planar solution and the other to unstable. For each case, we varyui to see if the
detonation initiates or fails. Exactly as in the Euler detonations [10], we observe that above a certain
critical value,uic, there is initiation, below−failure. Moreover, the curvature in our model also plays

24
th ICDERS – July 28 – August 2, 2013 – Taiwan 4



L. Faria and A. Kasimov A simple model for spherical detonation

a destabilizing role. As one can see in Fig. (2)(a), the detonation which is stable in the planar case,
is actually pulsating in the presence of significant curvature. The pulsations are large in magnitude
and irregular at first, aroundrs = 100 to aboutrs = 150, before settling down to regular decaying
oscillations. A similar trend is seen in the unstable case shown in Fig. (2)(b) where the range of the
irregular oscillations extends from aboutrs = 120 to rs = 400 before settling down to regular periodic
oscillations. When the curvature has diminished significantly, the detonation dynamics is essentially
that of a planar wave, hence all the phenomena observed in [1]carry over to the present study. However,
the destabilizing effect of curvature clearly seen in Fig. (2) requires further analysis in order to reveal
the underlying mechanisms. An additional factor that contributes to instability of the solutions isβ. For
planar solutions, we have shown in a separate study that smaller β lead to more unstable solutions, and
we expect the same effect to preserve in the curved detonations as well.

4 Conclusions

A simple extension of [1] allows one to capture, on a qualitative level, the dynamics of radially diverging
detonations. In particular, we have found that a quasi-steady solution exists which yields a relationship
between the shock speed and its curvature. Analogous to the corresponding solution of the reactive Euler
equations, this relationship has a turning-point behavior. We have also computed the unsteady solutions
of our model equation and found that the dynamics of the point-blast initiation can be qualitatively
reproduced by the model. Similarly to the Euler equations, we have found that the curvature plays a
destabilizing role in the dynamics.
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