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1 Introduction

In a recent papef]1], we have shown that a very simple mod&ipsble of qualitatively reproducing
the whole range of phenomena that one observes in one-donahsletonations in the reactive Euler
equations. The model is given by the following equation:

1
ut—|—§(u2—uus)$=f(:n,us), z<0, t>0, (1)

wherew (z,t) is the unknown playing the role of, say, pressure or tempegat,, = « (0_,t) is the
solutionu immediately after the shock (locatedzat= 0), and f is the forcing function. The left-hand
side of this equation arises from the Burgers equation [achithg the frame of reference to the shock.
The forcing function on the right-hand side is taken to mithie behavior of reaction rate in the Euler
equations. In particular, strong sensitivity pto the shock statey,, is its main feature. Furthermore,
[ is assumed to have a maximum at some distance away from thk, sho= x; (u,), which depends
on the shock state. i, is large, the maximum is near the shock, while for smalthe maximum is far
from the shock.

As shown in[[1], the computation of the steady-state sahgtiof [1) is exactly analogous to the ZND
theory, i.e. the reaction-zone structure is completelymeined by solving an ordinary differential
equation that is required to match the shock conditions at 0 as well as the Chapman-Jouguet
conditions at the sonic point. Moreover, the model also iptedhat the steady-state solutions become
unstable when the source functigns sufficiently sensitive to the shock state. Numerical Sohs of

(@) demonstrate the existence of a Hopf bifurcation and aeent period-doubling cascade that leads
to chaos in precise analogy to pulsating detonations in therEquations.

The model [(I1) is deceptively simple and appears to be an @matmdel akin to that of Ficketf]2].
However, it can be shown thdtl (1) is a consequence of thedtiear model derived by Rosales and
Majda from the reactive Euler equationis [3]. To establish ¢bnnection, one has to make certain
simplifying assumptions to derivel(1) from that theory. Thest significant of these is that the rate of
chemical reaction is assumed to be a function of the reaptiogress variable and the shock state only.
Even though this assumption results in a certain loss ofrgéitye the resulting simplification of the
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model is remarkableit yields a single scalar partial differential equationttgaalitatively retains most
of the complexity of detonations in the reactive Euler emquest The equation is, however, non-local
through the presence in the equation of the shock statef the unknownu. The solutionu (x,t) at
any given timet at any location: depends on the shock state, (), at that time. This non-locality is
a result of taking to an extreme the asymptotic idea that e/ reflecting from the shock propagate
much faster than the waves moving toward the shock from thetios zone.

A simple extension of the model by Fickett has originally s@own to reproduce the rich dynamics
of unstable detonations by Radulescu and Tang [4]. The$mi@ubhave also analyzed the problem of
detonation ignition by a piston and elucidated the role efrtitio between the reaction-zone length and
the induction-zone length in the ignition dynamics$ [5]. Tha to the qualitative agreement with the
detonation solutions of the full Euler equations, our madel that of[[4] serve to indicate strongly that
the mechanism for the complex dynamics of detonation iflgtatmight in fact be simple. Namely, for
our model, that a non-linear interplay between the slow wgvepagating along the forward character-
istics of the Euler equations and the fast waves reflectifithefshock, may be the main reason for the
instability. These latter waves are treatedn (1) as prafiag at an infinite speed.

In this paper, we consider an extension[df (1) to model rhdéiverging detonations. We analyze the
spherical case, but the cylindrical case is similar. Oul got explore the role of shock curvature in
the solution and a possibility of the initiation vs failureHavior akin to that in the Euler detonations
(e.g. [6]). Equation[{1) written in the laboratory framekea the form
2
1h+(%> :{g@ & (1), u((7),7), £<E(), @
I3 ’ E > ES (T) )

wherer = t, £ = z + & (t), and{ = & (¢) is the shock path in the laboratory frame. The shock in
this model is located at = 0 with the jump condition giving the shock speed @s= u,/2, when
the upstream-state is assumed toige= 0. Indeed, the Rankine-Hugoniot condition is given by
—D[u] + § [u*] = 0, where[z] = z* — =z~ is the jump ofz across the shock. With™ = u, and
u~ = ug, we find thatD = % (us + uq) = %us. An extension of[(]l) to spherical geometry is achieved
by replacing the divergence ter(mﬂ/Z)5 in @) by its form in spherical coordinategg (§2u2/2)5 =
(u2/2)5 + u?/¢. Then the shock-frame version 61 (1) for diverging detaratibecomes

u2

x+rs(t)

wherer; (t) denotes the shock radius, which is related to the shockasale, /dt = D = u,/2. Thus
the flow divergence acts as an energy sink competing withdhanig term f. As we show below,
similarly to the Euler equationd,](3) predicts quasi-sgesalutions with turning points in the plane of
us VSr. In addition, [B) possesses pulsating solutions, as in ldmeap case, however now affected by
curvature.

1
w5 (= wu) = f (@,us) - , €20, >0, ®)

In the remainder of this paper, we exploré (3) with the puepolsdemonstrating the role of curvature,
1/rs, in the dynamics of its solutions. We should note here theltdtt had previously considered the
flow divergence in his analog modegl [7], and demonstratedi&oeease of detonation velocity with flow
divergence. However, his geometric term was quite diffefiem ours, in addition to other differences
between our models.

2 Quasi-steady solution

In this section, we look for quasi-steady solutions[df (3pevein the time derivative is assumed to be
zero. Strictly speaking, the equation does not have stetadg-solutions for a simple reaseas the
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Figure 1: (a) Quasi-steady, — ~ curves a3 = 0.1 fixed and variablev. (b) The quasi-steady solution

profilesu () on the top and the bottom branches of the- x curve in (a) atv = 1 andx = 0.1.

shock evolves, its radius,, necessarily changes in time and therefore, so doemd hence. (x,t).
Nevertheless, one can look for quasi-steady solutions fiynaisg that such variations ef in time are
negligible so that at any given time, the solution structamlists instantaneously to the change- of
This asymptotic idea is precisely the main assumption intbak-curvature theory of slowly evolving
detonations (i.e. the Detonation Shock Dynamics,|[8, 9]).

Whenu; is dropped,[{B) can be written as

dug _ f (w,us) — kud/ (1 + Kkx) (4)

dx uy — s /2

wherex = 1/r, is the mean curvature of the shock. This equation must bedsivbject tay (0) = u;
and to some condition at = —r,, i.e. atr = 0. Notice that, as usual in detonation theory, there is
possibility of a Chapman-Jouguet (i.e. self-sustainet)tem when there exists a sonic point= .,
where both the numerator and the denominatollof (4) vanish, i

o))

Ku2 Ug
*9 - * - 07 x T T — 0 5
!/ (x us) 1+ kxy b 2 ©)

The solutionu, at the sonic point is obtained, for any givenandx, by solving [4) fromz = 0, where
uy = us 10z = x,, Wwhereug = u,. Thereforeu, = ug (x.;us, k), and hencel(5) is a system of two
equations with three unknowns:,, «, andus. By eliminatingx,, one obtains a relationship between
us andx, exactly analogous to the well-knowh — & relation in the detonation theory![9]. The actual
numerical computation of the, — « relation is a bit involved due to the saddle-point naturehefgonic
point, but it can be done.

To perform specific calculations further below, we choosesthme forcing functiorf as in [1],

__¢@ (2 +ug )’
f= mexp —T] ’ (6)

except nows = [4 (1 + erf (u;a/Q\/B))] ~! to make sure that always integrates to the same constant.
In this particular form, the model is dimensionless withcaled so thai, = 1 in the steady planar state
(see [1] for details). The parametensand 3 in () measure the sensitivity of to the shock state
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Figure 2: Initiation and failure of: (a) stable solutionshat= 3.9 and (b) unstable solutions at= 4.5.
In both figures3 = 0.1, the computational domain length= 103, and N = 10* grid points used.

and the width off, respectively. They are analogous to the activation engiyand the ratio of the
reaction-zone length to the induction-zone lengthig the Euler equations.

In Fig. (@)(a), we show the dependenceugfon « for various values ofr at 3 = 0.1. The usual turning-
point behavior is seen with the turning-point curvaturerdasing asy is increased. This is similar to
that in Euler detonations wherein the activation energgdea the same effects![8, 9]. One important
difference is that in Fig.[{1)(a) there are only two branghks lower branch tending te, = 0 and

x = 0, while in the Euler equations, there are in general threadhes, the lower branch tending to
D = c,, the ambient sound speed, and- co. In Fig. (I)(b), we also show the solution profiles that
correspond to the, — « curves in Fig.[(lL)(a) at a particular valuerof= 0.1, but at two different values
of us, one on the upper branch and one on the lower. A notable feafihese profiles is the existence
of an internal maximum ofi, which is absent in the planar solution at the same parameter

3 Unsteady numerical simulations

In order to better understand the role of the curvature tar@@), we solve the problem analogous to that
of the direct initiation of gaseous detonation. In the la@bory frame of reference,](3) takes the form

u?\ [ fr=ra ) ulr(t),8), T <ro(t),
Ut+< >T— +{O, r>rs(t).

: ™

r

We solve this equation numerically using a fifth-order WEN@b&thm and the initial conditions cor-
responding to a localized source of the type

i, 0<r <,
u(x,m:{gz e
I a

Herer; is the radius of the initial hot spoty; is its “temperature”. By analogy with the point-blast
initiation, we keepr; fixed at some small value and vaiy, which is a measure of the source energy.
Our findings are displayed in Fig[1(2). We select two sets oaipeters fora and 5 such that one
corresponds to a stable planar solution and the other tabiestFor each case, we varyto see if the
detonation initiates or fails. Exactly as in the Euler detioons [10], we observe that above a certain
critical value,u;., there is initiation, belowfailure. Moreover, the curvature in our model also plays
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a destabilizing role. As one can see in Figl (2)(a), the ddton which is stable in the planar case,
is actually pulsating in the presence of significant cum&atuThe pulsations are large in magnitude
and irregular at first, aroung, = 100 to aboutrs = 150, before settling down to regular decaying
oscillations. A similar trend is seen in the unstable cassvshin Fig. [2)(b) where the range of the
irregular oscillations extends from abatt= 120 to r, = 400 before settling down to regular periodic
oscillations. When the curvature has diminished signiflgathe detonation dynamics is essentially
that of a planar wave, hence all the phenomena observed tafdy] over to the present study. However,
the destabilizing effect of curvature clearly seen in Fg) requires further analysis in order to reveal
the underlying mechanisms. An additional factor that dbates to instability of the solutions j$ For
planar solutions, we have shown in a separate study thatesmidead to more unstable solutions, and
we expect the same effect to preserve in the curved detosai® well.

4 Conclusions

A simple extension of]1] allows one to capture, on a qualigelevel, the dynamics of radially diverging
detonations. In particular, we have found that a quasidgtsalution exists which yields a relationship
between the shock speed and its curvature. Analogous tothtesponding solution of the reactive Euler
equations, this relationship has a turning-point behaWg have also computed the unsteady solutions
of our model equation and found that the dynamics of the daamt initiation can be qualitatively
reproduced by the model. Similarly to the Euler equations,have found that the curvature plays a
destabilizing role in the dynamics.
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