Algebraic closure of Scalar Dissipation Rate for Large Eddy Simulations of turbulent premixed combustion

Y. Gao¹, N. Chakraborty¹, N. Swaminathan² ¹School of Mechanical and Systems Engineering, Newcastle University Newcastle-Upon-Tyne, Tyne and Wear, NE1 7RU, United Kingdom

²Cambirdge University Engineering Department, University of Cambridge Trumpington Street, Cambridge, Cambridgeshire, CB2 1PZ, United Kingdom

1 Introduction

The Scalar Dissipation Rate (SDR) based reaction rate closure in turbulent premixed flames has rarely been addressed in the context of Large Eddy Simulations (LES) [1]. In the context of RANS the mean reaction rate $\{\dot{w}\}$ of the reaction progress variable c can be expressed in terms of Favre-averaged SDR (i.e. $\hat{N}_c = \{\rho D \nabla c \cdot \nabla c\}/\{\rho\}$) as: $\{\dot{w}\} = 2\{\rho\}\hat{N}_c/(2c_m - 1)[2,3]$ where ρ , D, $N_c = D \nabla c \cdot \nabla c$ and \dot{w} are the gas density, progress variable diffusivity, instantaneous SDR and reaction rate of c respectively, with $\{Q\}$ and $\hat{Q} = \{\rho Q\}/\{\rho\}$ indicating the Reynolds-averaged and Favre-averaged values of a general quantity Q respectively. The quantity c_m is given by: $c_m = \int_{0}^{1} [\dot{w}cf(c)]_L dc / \int_{0}^{1} [\dot{w}f(c)]_L dc \text{ where } f(c) \text{ is the burning rate probability density function (pdf)}$ and the subscript 'L' refers to the values in unstrained planar laminar premixed flames. The analysis by Dunstan *et al.* [1] demonstrated that $\{\dot{w}\}=2\{\rho\}\hat{N}_c/(2c_m-1)$ remains valid for large values of the filter size Δ in the context of LES when $\{\dot{w}\}$, $\{
ho\}$ and \hat{N}_c are replaced by $\overline{\dot{w}}$, $\overline{
ho}$ and $\widetilde{N}_c = \overline{\rho D \nabla c . \nabla c} / \overline{\rho}$ respectively, where the overbar suggests an LES filtering operation and the Favre-filtered value of a general quantity Q is denoted by $\widetilde{Q} = \overline{\rho Q} / \overline{\rho}$. The analysis by Dunstan *et* al. [1] has been carried out only for a V-flame DNS with single-step Arrhenius type chemistry and unity Lewis number. Current analysis extends the a-priori DNS analysis of Dunstan et al. [1] by addressing the SDR based reaction rate closure and the algebraic modelling of \widetilde{N}_c for turbulent premixed flames with different values of heat release parameter τ , global Lewis number Le and turbulent Reynolds number Re, . In this respect, the objectives of this current analysis are: (i) to

extend the SDR based \overline{w} closure for a range of different values of τ , Le and Re_t and (ii) to identify an algebraic closure of \widetilde{N}_c which remains valid for a range of different values of τ , Le and Re_t. These objectives have been addressed here by *a-priori* analysis based on a simple chemistry DNS database of statistically planar turbulent premixed flames with a range different values of τ , Le and Re_t.

2 Mathematical Background and Numerical Implementation

A wrinkling factor based on SDR can be defined as [1]: $\Xi_D = \overline{\rho} \widetilde{N}_c / \overline{\rho} \widetilde{D} \nabla \widetilde{c} \cdot \nabla \widetilde{c}$. Dunstan *et al.* [1] explored the possibility of modelling Ξ_D using a power-law in the following manner: $\Xi_D = (\eta_O / \eta_{iD})^{\alpha}$ where η_{iD} is the inner cut-off scale for Ξ_D , whereas the outer cut-off scale η_O for LES can be taken to be the LES filter width Δ . If $\overline{\dot{w}}$ can be considered to be directly proportional to $\overline{\rho}\widetilde{N}_c$, the volume-averaged value of $\overline{\rho}\overline{N}_c$ should remain independent of Δ , which leads to $\overline{\langle \rho N_c \rangle} = \langle \overline{\rho} \widetilde{N}_c \rangle$ where $\langle ... \rangle$ indicates a volume averaging operation. Thus, it is possible to write:

$$\log \Xi_D^V = \log(\left\langle \overline{\rho} \widetilde{N}_c \right\rangle / \left\langle \overline{\rho} \widetilde{D} \nabla \widetilde{c} \cdot \nabla \widetilde{c} \right\rangle) = \alpha \log \Delta - \alpha \log \eta_{iD}$$
(1)

where the superscript V indicates the wrinkling factor based on the volume-averaged quantities: (i.e. $\Xi_D^V = \langle \overline{\rho} \widetilde{N}_c \rangle / \langle \overline{\rho} \widetilde{D} \nabla \overline{c} . \nabla \overline{c} \rangle$). Dunstan *et al.* [1] also explored the possibility of extending an algebraic model for SDR proposed by Kolla *et al.* [4] in the context of RANS. However, the model by Kolla *et al.* [4] was proposed for unity Lewis number flames, which was extended for $Le \neq 1.0$ combustion by Chakraborty and Swaminathan [5]. The algebraic RANS model proposed by Chakraborty and Swaminathan [5] for the unresolved part of SDR has been extended here for the purpose of LES in the following manner:

$$\widetilde{N}_{c} = \widetilde{D}\nabla\widetilde{c}.\nabla\widetilde{c} + (1-f)\left[2K_{c}^{*}S_{L}/(Le^{1.88}\,\delta_{th}) + (C_{3}^{*} - \tau.Da_{\Delta}C_{4}^{*})(2u_{\Delta}'/3\Delta)\right]\widetilde{c}.(1-\widetilde{c})/\beta_{c}$$
(2)

where S_L is the unstrained laminar burning velocity, $\delta_{th} = (T_{ad} - T_0)/Max|\nabla T|_L$ is the thermal flame thickness, $f = \exp[-\theta(\Delta/\delta_{th})^p]$ is a bridging function, C_3^*, C_4^* and β_c are the model $u'_{\Delta} = \sqrt{(\overline{\rho u_i u_i} / \overline{\rho} - \widetilde{u_i} \widetilde{u_i})/3}$ is the sub-grid turbulent velocity fluctuation and parameters, $\tau = (T_{ad} - T_0)/T_0$ is the heat release parameter with T, T_0 and T_{ad} being the instantaneous gas, unburned gas and adiabatic flame temperatures respectively. In Eq. 2 K_c^* is given by: $K_c^* = (\delta_{th} / S_L) \int_0^1 [N_c \nabla \vec{u} f(c)]_L dc / \int_0^1 [N_c f(c)]_L dc \quad [4] \quad \text{and} \quad C_3^* \quad \text{and} \quad C_4^* \quad \text{are} \quad \text{expressed}$ as: $C_3^* = 2.0\sqrt{Ka_{\Delta}}/(1.0+\sqrt{Ka_{\Delta}})$; $C_4^* = 1.2(1.0-\tilde{c})^{\Phi}/[Le^{2.57}(1+Ka_{\Delta})^{0.4}]$ where $\Phi = 0.2+1.5|1.0-Le|^{\Phi}$ with $Da_{\Delta} = \Delta S_L / u'_{\Delta} \delta_{th}$ and $Ka_{\Delta} = (u'_{\Delta} / S_L)^{3/2} (\Delta / \delta_{th})^{-1/2}$ being the sub-grid Damköhler and Karlovitz numbers respectively. It is worth noting the first term on the right hand side of Eq. 2 was absent in the RANS model by Chakraborty and Swaminathan [5] and the second term featured in Ref. [5] without (1-f). The bridging function (1-f) ensures that \tilde{N}_c approaches to $N_c = D\nabla c \cdot \nabla c$ for small values of filter size (i.e. $\lim_{\Lambda \to 0} \tilde{N}_c = N_c = D\nabla c \cdot \nabla c$ where $f \approx 1.0$), whereas Eq. 2 approaches to the RANS model expression proposed by Chakraborty and Swaminathan [5] for $\Delta \gg \delta_{th}$ where $f \approx 0.0$. The terms $2K_c^*(S_L/\delta_{th})$ and $(C_3^* - \tau Da_{\Lambda}C_4^*)(2u_{\Lambda}'/3\Delta)$ in Eq. 2 arise due to dilatation and strain rate contributions to the SDR transport, whereas $\tilde{c}(1-\tilde{c})/\beta_c$ originates

Gao, Y.

due to the combined reaction and molecular dissipation contributions [5]. The performances of the models given by Eqs.1 and 2 have been assessed here based on *a-priori* analysis of DNS data of statistically planar turbulent premixed flames. The initial values for the root-mean-square (rms) turbulent velocity fluctuation normalised by unstrained laminar burning velocity u'/S_L and the integral length scale to flame thickness ratio l/δ_{th} are presented in Table 1 along with the initial values of Damköhler number $Da = l.S_L/u'\delta_{th}$, Karlovitz number $Ka = (u'/S_L)^{3/2}(l/\delta_{th})^{-1/2}$, turbulent Reynolds number $\text{Re}_t = \rho_0 u' l/\mu_0$, heat release parameter $\tau = (T_{ad} - T_0)/T_0$ and Le, where ρ_0 and μ_0 are the unburned gas density and viscosity respectively. Standard values are taken for Prandtl number Pr , ratio of specific heats $\gamma = C_P/C_V$ and the Zel'dovich number β (i.e. Pr = 0.7, $\gamma = 1.4$, $\beta = 6.0$).

Table 1. Simulation parameters corresponding to the DNS database.

Case	Domain size / δ_{th}^{3}	Grid size	u'/S_L	l/δ_{th}	τ	Re_t	Da	Ka
Α	24.1×24.1 ×24.1	230×230×230	7.5	2.45	3.0	47.0	0.33	13.2
B-F	24.1×24.1 ×24.1	230×230×230	7.5	2.45	4.5	47.0	0.33	13.2
G	36.6×24.1 ×24.1	345×230×230	5.0	1.44	4.5	22.0	0.33	8.67
Н	36.6×24.1 ×24.1	345×230×230	6.25	1.67	4.5	23.5	0.23	13.0
Ι	36.6×24.1 ×24.1	345×230×230	7.5	2.50	4.5	48.0	0.33	13.0
J	36.6×24.1×24.1	345×230×230	9.0	4.31	4.5	100	0.48	13.0
K	36.6×24.1×24.1	345×230×230	11.25	3.75	4.5	110	0.33	19.5

It can be seen from Table 1 Re_t values are comparable for cases A-F and I. The values of heat release parameters are different for cases A and B-K, whereas Le = 0.34, 0.6, 0.8 and 1.2 for cases B, C, D and F respectively and in other cases Le is taken to be unity. In cases G-K the variation of Re_t is brought about by changing either Da or Ka independently of the other. More details on this database can be obtained from Refs. [5,6] The DNS data is explicitly filtered using a Gaussian filter using the following convolution operation: $\overline{Q(\vec{x})} = \int Q(\vec{x} - \vec{r})G(\vec{r})d\vec{r}$ for the purpose of *a-priori* analysis.

3 Results and Discussion

The variations of the mean values of $\overline{w} \times \delta_{th} / \rho_0 S_L$ and $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ conditional on \widetilde{c} values for $\Delta \approx 0.8\delta_{th}$ and $\Delta \approx 2.8\delta_{th}$ for cases A-G, I and K are shown in Fig. 1, which shows that $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ does not capture $\overline{w} \times \delta_{th} / \rho_0 S_L$ for $\Delta < \delta_{th}$ but $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ captures $\overline{w} \times \delta_{th} / \rho_0 S_L$ for $\Delta > \delta_{th}$. Figure 1 shows that the agreement between $\overline{w} \times \delta_{th} / \rho_0 S_L$ and $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ and $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ improves with increasing Δ . The cases H and J are qualitatively similar to cases I and K respectively and thus are not shown in Fig. 1 and in subsequent figures. The expression $\{\dot{w}\} = 2\{\rho\} \hat{N}_c / (2c_m - 1)$ was originally proposed for Da > 1 where the pdf of c can be approximated as a bi-modal distribution [2]. The variation of Da_{Δ} conditional on \widetilde{c} values for $\Delta \approx 0.8\delta_{th}$ and $\Delta \approx 2.8\delta_{th}$ are shown in Fig. 2 for cases A-G, I and K. The pdfs of c within the filter volume at $\widetilde{c} = 0.5$ for $\Delta \approx 0.8\delta_{th}$ and $\Delta \approx 2.8\delta_{th}$ are shown in Fig. 2.

 $2\overline{\rho}\widetilde{N}_c/(2c_m-1)\times\delta_{th}/\rho_0S_L$ improves with increasing Da_{Δ} when there is a significant probability of finding $c \neq \widetilde{c}$ within the filter volume.

Figure 1: Variation of mean values of $\overline{w} \times \delta_{th} / \rho_0 S_L$ (-----), $2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \times \delta_{th} / \rho_0 S_L$ (------) and the prediction of Eq. 3 (-----) conditional on \widetilde{c} across the flame brush at $\Delta \approx 0.8\delta_{th}$ (1st row) and $\Delta \approx 2.8\delta_{th}$ (2nd row) for case A (----) and E (----) (1st column), case B (----) and C (----) (2nd column), cases D (----) and F (-----) (3rd column) and cases G (-----), I (-----) and K (-----) (4th column).

Figure 2: Variation of Da_{Δ} conditionally averaged in bins of \tilde{c} for cases A-G, I and K for (a) $\Delta \approx 0.8\delta_{th}$ and (b) $\Delta \approx 2.8\delta_{th}$. Pdfs of *c* within the filter volume for (c) $\Delta \approx 0.8\delta_{th}$ and (d) $\Delta \approx 2.8\delta_{th}$ for cases A-G, I and K.

In order to improve the prediction of $\overline{\dot{w}}$ for $\Delta < \delta_{th}$ and to satisfy the limiting condition given by: $\lim_{\Delta \to 0} \overline{\dot{w}} = \dot{w}$, an alternative expression for $\overline{\dot{w}}$ in the context of LES is proposed here:

$$\overline{\dot{w}} = f_1(\overline{\rho}, \widetilde{c}, \widetilde{T}) \exp(-\phi \Delta/\delta_{th}) + [1 - \exp(-\phi \Delta/\delta_{th})] \{ 2\overline{\rho} \widetilde{N}_c / (2c_m - 1) \}$$
(3)

where f_1 is such a function, which ensures that $\dot{w} = f_1(\rho, c, T)$ and the model parameter ϕ is given by $\phi = 0.56\delta_L S_L / \alpha_{T0}$ where, $\delta_L = 1/\max |\nabla c|_L$ and α_{T0} is the thermal diffusivity in unburned gas. Equation 3 ensures that the right hand side becomes \dot{w} when $\Delta \rightarrow 0$ (i.e. $\Delta << \delta_{th}$) and $\overline{\dot{w}} = 2\overline{\rho}\widetilde{N}_c/(2c_m - 1)$ is obtained for $\Delta >> \delta_{th}$. Moreover, Δ/δ_{th} can be taken to scale as: $\Delta/\delta_{th} \sim (u'_{\Delta}/S_L)Da_{\Delta}$, which suggests that Eq. 3 tends to $\overline{\dot{w}} = 2\overline{\rho}\widetilde{N}_c/(2c_m - 1)$ for high values of Da_{Δ} for a given value of u'_{Δ}/S_L . Figure 1 shows that Eq. 3 satisfactorily predict $\overline{\dot{w}}$ for all cases considered here for both $\Delta < \delta_{th}$ and $\Delta > \delta_{th}$. The satisfactory performance of Eq. 3 indicates that $\overline{\dot{w}}$ can be satisfactorily closed if \widetilde{N}_c is adequately modelled. The variations of Ξ_D^V with Δ/δ_{th} for cases A-G, I and K are shown in Fig. 3 on a log-log plot. It is evident from Fig. 3 that a power-law between Ξ_D^V with Δ/δ_{th} (see Eq. 1) can be obtained for $\Delta > \delta_{th}$. The slope of the best fit straight line with the steepest slope provides the value of α and the intersection of this line with the $\Xi_D^V = 1.0$ gives Gao, Y.

the measure of η_{iD}/δ_{th} . Figure 3 demonstrates that α increases with decreasing (increasing) *Le* (u'/S_L) whereas η_{iD} remains of the order of δ_{th} for all cases considered here. The increase in the extent of flame wrinkling with decreasing (increasing) *Le* (u'/S_L) is reflected in the increase in α with decreasing (increasing) *Le* (u'/S_L). The variation of Ξ_D^V with Δ/δ_{th} can be mimicked using the following expression [1]: $\Xi_D^V = \exp(-\theta_1 \Delta/\delta_{th}) + [1 - \exp(-\theta_2 \Delta/\delta_{th})](\Delta/\eta_{iD})^{\alpha}$ where θ_1 and θ_2 are model parameters. This leads to a possible model for \widetilde{N}_c :

$$\widetilde{N}_{c} = \widetilde{D}\nabla\widetilde{c}.\nabla\widetilde{c} \left[\exp(-\theta_{1}\Delta/\delta_{th}) + [1 - \exp(-\theta_{2}\Delta/\delta_{th})](\Delta/\eta_{tD})^{\alpha}\right]$$
(4)

Figure 3: Variations of Ξ_D^{ν} with Δ/δ_{th} on a log-log plot along with the predictions of Eqs. 1 and 2 for case A and E (1st column), case B and C (2nd column), cases D and F (blue) (3rd column) and cases G, I and K (4th column).

According to Eq. 4, \widetilde{N}_c approaches to $D\nabla c.\nabla c$ when the flow is fully resolved (i.e. for $\Delta \to 0$), where $\lim_{\Delta \to 0} \overline{\rho} \widetilde{N}_c = \rho D \nabla c \cdot \nabla c$, and for $\Delta >> \delta_{th}$, Eq. 4 approaches to the power-law $\Xi_D = (\Delta/\eta_{iD})^{\alpha}$ provided suitable values of θ_1 and θ_2 are chosen. The variation of Ξ_D^V with Δ/δ_{th} for optimum values of θ_1 and θ_2 are shown in Fig. 3 for the values of η_{iD} and α extracted from DNS data. The mean values of the predictions of Eq. 4 conditional on \tilde{c} for optimum values of θ_1 and $heta_2$, and lpha and η_{iD} extracted from DNS database are compared with the corresponding \widetilde{N}_c variation extracted from DNS data in Fig. 4 for $\Delta \approx 0.8\delta_{th}$ and $\Delta \approx 2.8\delta_{th}$ for cases A-G, I and K. A comparison between Figs. 3 and 4 suggests that although Eq. 4 satisfactorily captures the variation of Ξ_D^V with Δ/δ_{th} , it does not adequately capture local behaviour of \tilde{N}_c for large filter widths Δ (i.e. $\Delta > \delta_{th}$). For $\Delta < \delta_{th}$ the first term on the right side of Eq. 4 remains a major contributor and thus Eq. 4 is more successful in capturing the local behaviour of \tilde{N}_c for $\Delta < \delta_{th}$ than in $\Delta > \delta_{th}$ (see Fig. 4). This suggests that power-law based models with a single global value of α may not be suitable for the LES modelling of \tilde{N}_c , which is consistent with previous findings. [1]. It has been found that Eq. 2 captures the variation of Ξ_D^V with Δ/δ_{th} for $f = \exp[-0.7(\Delta/\delta_{th})^{1.7}]$ provided an optimum value of β_c is used. The optimum value of β_c has been found to increase with increasing τ (i.e. β_c =3.45 to 4.35 from τ =3.0 to 4.5), which is consistent with β_c =2.76 for the model expression given by eq. 2 for the flame with $\tau = 2.52$, analysed in Ref. [1]. By contrast, β_c decreases with increasing Re. before assuming asymptotic values for $\operatorname{Re}_t \geq 50$, whereas Le does not have any major influence on β_c . The observed τ and Re_t dependences of β_c has been parameterised here as: $\beta_{c} = \left[9.2 - 2.5 / \{1 + \exp[-10(A - 4)]\} \right] \tau / (1 + \tau) \frac{7}{3} (\rho_{0} D_{0} / \rho_{b} D_{b})^{0.15}; \text{ where } A = \left[\operatorname{Re}_{t\Delta}^{0.83} + 0.1\right] / \left[(\Delta / \delta_{tb})^{1.73} + 0.1\right]$ (5)where $\text{Re}_{t\Delta} = 4.0 \rho_0 u'_{\Delta} \Delta / \mu_0$ can be taken as the sub-grid turbulent Reynolds number, and ρ_0 and ρ_b (

 D_0 and D_b) are the unburned and burned gas densities (diffusivities) respectively. The sub-grid

Gao, Y.

turbulent Reynolds number dependence of β_c is consistent with a recent finding in the context of RANS [6]. The predictions of Eq. 2 with the parameterisation given by Eq. 5 are shown in Fig. 4. Figures 3 and 4 show that the model given by Eq. 2 satisfactorily predicts both the global and local behaviours of \tilde{N}_c for flames with a range of different values of τ , *Le* and Re_t.

Figure 4: Variation of mean values of $\widetilde{N}_c \times \delta_{th} / S_L$ (-----) conditional on \widetilde{C} across the flame brush along with the predictions of Eq. 2 (----) and Eq. 4 (-----) at $\Delta \approx 0.8\delta_{th}$ (1st row) and $\Delta \approx 2.8\delta_{th}$ (2nd row) for case A (----) and E (----) (1st column), case B (----) and C (----) (2nd column), cases D (----) and F (------) (3rd column) and cases G (-----), I (-----) and K (------) (4th column).

4 Conclusions

The SDR based reaction rate closure for turbulent premixed flames has been analysed here by explicitly LES filtering a DNS database of statistically planar turbulent premixed flames with a range of different values of τ , *Le* and Re_t. Existing algebraic models for $\overline{\dot{w}}$ and \widetilde{N}_c in the context of RANS have been extended here for LES based on *a-priori* analysis of DNS data, so that they can be used for a range of different values of Lewis number, heat release parameter and turbulent Reynolds number. However, the proposed models need to be implemented in actual LES simulations in a configuration for which experimental data is available for the purpose of *a-posteriori* assessment.

References

- [1] Dunstan, T et al. (2013). Scalar dissipation rate modelling for Large Eddy Simulation of turbulent premixed flames. Proc. Combust. Inst, 34: 1193.
- [2] Bray, K.N.C., (1980), Turbulent flows with premixed reactants, in *Turbulent Reacting Flows*, Springer Verlag, Berlin Heidelburg, New York, eds. Libby, P.A., and Williams, F.A., pp. 115-183.
- [3] Chakraborty, N., Cant, R.S. (2011). Effects of Lewis number on Flame Surface Density transport in turbulent premixed combustion. Combust. Flame. 158: 1768.
- [4] Kolla, H. et al. (2009). Prediction of turbulent flame speed using scalar dissipation rate, Combust. Sci. Technol. 181: 518.
- [5] Chakraborty, N. Swaminathan, N. (2011) Effects of Lewis number on scalar variance transport in turbulent premixed flames, Flow Turb. Combust., 87: 261.
- [6] Chakraborty, N., Swaminathan, N. (2013) Effects of turbulent Reynolds number on the Scalar Dissipation Rate transport in turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Combust. Sci. Technol., 185: 676.