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1 Introduction 
Model reduction or simplification of detailed chemical kinetic mechanisms is important in order to 
reduce the CPU time needed for simulating turbulent reactive media and to understand the essential 
features of the mechanisms. A variety of reduction methods, exemplified by the computational 
singular perturbation and the intrinsic low-dimensional manifold, have been developed and applied, 
especially in research into combustion [1]. Both methods are based on spectral decomposition in the 
time domain, which enables the identification of slow and fast modes of the ordinary differential 
equations of the chemical kinetics: The identified slow modes represent the low-dimensional manifold 
of the reduced mechanism. In addition to this type of method, Gorban et al. [2] and Lebiedz [3] have 
developed methods utilizing the second law of thermodynamics, a corollary of which says that 
minimum entropy production holds for the system in the linear regime of the non-equilibrium 
stationary state [4]. In contrast Ziegler [5] has proposed the concept of maximal entropy production, 
which is still an issue under debate [6]. In the present work, we discuss the relation between the 
chemical kinetic path and entropy production in regard to model reduction for chemical kinetic 
mechanisms.  

2 Methodology  
The purely reactive contribution to the entropy production rate of thermally perfect gases is given 
by [4] 

dS
dt

= R̂Vσ        (1)  

 
where  is time,  is the entropy of the system,  is the universal gas constant,  is the volume of 
the system, and  is the total reactive contribution to the entropy production rate:  

σ = σ l
l=1

NR

∑        (2),                 σ l = Rfl − Rbl( )ln Rfl

Rbl
       (3) . 

Equation 3 is the contribution of the th reaction with forward reaction rate  and backward 

reaction rate . The chemical kinetics proceed according to the following ordinary differential 
equations: 
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dy
dt

=

βl −

α l( )Rl

l=1

NR

∑        (4)   

where  

Rl = Rfl − Rbl        (5) , Rfl = k fl yk
α kl

k=1

N

∏        (6-1) , Rbl = kbl yk
βkl

k=1

N

∏        (6-2) , 

 
y = y1 y2  yN⎡

⎣
⎤
⎦
T

       (7) , 

 

α l = α1l α 2l  αNl

⎡
⎣

⎤
⎦
T

       (8-1) , and 
 


βl = β1l β2l  βNl

⎡
⎣

⎤
⎦
T

       (8-2) . 

Here  and  are the reaction rate constants of the l th forward and backward reactions, 

respectively, yk  is the concentration of the th species, and  and  are the stoichiometric 
coefficients of the th species in the th forward and backward reactions, respectively. In the 
following we discuss three types of paths on the basis of the entropy production rate in Eq. 2; these 
paths may be used to approximate the true chemical kinetic path.  

2.1 Steepest gradient path 
Ziegler [5] has proposed an orthogonality principle for irreversible processes, which is equivalent to a 
certain extremal principle, that is, the maximal rate of entropy production. However, publications on 
this topic are fragmented over wide a variety of areas of research, and the thermodynamic and 
statistical bases of the principle are not clear, although the second law of thermodynamics can be 
obtained as a corollary of the principle [6]. In the present study, we simply apply the principle by 
assuming that reactions proceed in the direction opposite to the steepest gradient of the entropy 
production rate given in Eq. 1: 

 

dyind
ds

= −∇σ        (9)  

where  is the pseudo time (i.e., an artificial time-marching parameter) and  is the vector that 
consists of the species concentrations chosen as the set of independent variables consistent with 
element conservation (see Section 2.3). The path according to Eq. 9 will be called the steepest gradient 
path hereafter. 

2.2 Newton-direction path 
The method described in the previous section can be interpreted as a version of a well-known 
optimization method, the method of steepest ascent or descent: the standard algorithm uses line search 
along a definite length in the search direction, whereas Eq. 9 uses the pseudo time and differential. 
Another well-known optimization method is Newton iteration, in which the function to be optimized is 
approximated by the second-order Taylor series expansion in the direction of line search, the so-called 
Newton direction [7]. The Newton-direction path can be calculated according to  

 
H dyind

ds
= −∇σ        (10)   

where  
H ≡ ∇2σ        (11)  

is the Hessian of σ . The Newton direction is also utilized by the method of conjugate gradient, and 
the direction of the steepest conjugate gradient is the Newton direction.  

2.3 Path of linear non-equilibrium 
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The third method described here is a completely new method. This path is calculated according to  

 

2Q dyind
dt

= −∇σ        (12)

where

Q ≡

B3( )k−K ,1

1
yk

B3( )k−K ,1
k=K+1

N

∑ B3( )k−K ,1

1
yk

B3( )k−K ,2
k=K+1

N

∑  B3( )k−K ,1

1
yk

B3( )k−K ,K
k=K+1

N

∑

B3( )k−K ,2

1
yk

B3( )k−K ,1
k=K+1

N

∑ B3( )k−K ,2

1
yk

B3( )k−K ,2
k=K+1

N

∑  B3( )k−K ,2

1
yk

B3( )k−K ,K
k=K+1

N

∑
   

B3( )k−K ,K

1
yk

B3( )k−K ,1
k=K+1

N

∑ B3( )k−K ,K

1
yk

B3( )k−K ,2
k=K+1

N

∑  B3( )k−K ,K

1
yk

B3( )k−K ,K
k=K+1

N

∑

⎡

⎣

⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
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⎥
⎥
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+

1
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1
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   (13)

 

Here it should be noted that  is not the pseudo time. The matrix  is defined by 

B3 ≡ B2
−1B1        (14)  

where  and  are the coefficient matrices of the equations of element conservation: 

 B1
yind + B2

ydep =
c        (15)  

where 

 
 
yind = y1 y2  yK⎡

⎣
⎤
⎦
T

       (16-1),       ydep = yK+1 yK+2  yN⎡
⎣

⎤
⎦
T

       (16-2)  

 
c = c1 c2  cM⎡

⎣
⎤
⎦
T

       (17) , 

 
 is the number of independent species concentrations (the components of the vector ),  is the 

number of elements and also the number of dependent species concentrations (the components of the 
vector  

ydep ), N = K +M , and  ci  for i = 1,,M  is the total number density of the th element in 

the system. It can be proved that Eq. 12 coincides with the true chemical kinetic equation Eq. 4 to first 
order in the variable  defined by 

Rfl = 1+ ε l( )Rbl        (18) . 
However, the proof is not shown here due to the limit on the length of papers.  
Since the following relations also hold to first order in  when Eq. 18 is satisfied, the path 
according to Eq. 12 can be called the path of linear non-equilibrium: 

σ = ε l
2Rbl

l=1

NR

∑ = XlJl
l=1

NR

∑      (19) , Jl ≡ ε lRbl = RblXl      (20-1) , Xl ≡ ε l      (20-2)  

where  and  are, respectively, interpreted as the thermodynamic flux and thermodynamic force 
due to the th reaction.  
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3 Results  
In addition to the chemical kinetic path (Eq. 4), the paths given by Eqs. 9, 10, and 12 have been 
calculated for the following examples of simple reaction systems. All the (dimensionless) calculations 
here are under constant volume with fixed reaction-rate constants, which enables the graphical 
representation of  with respect to only the species concentration.  

3.1 A   2B   C: 1-D manifold 
Figure 1 shows the four paths (chemical kinetic path, the steepest gradient path, the Newton-direction 
path, and the path of linear non-equilibrium) for the reactions A2BC projected onto the 
concentration ( yA , yB ) phase plane with a contour plot of ; yC is determined by element 
conservation:  

yA + 0.5yB + yC = c       (21) . 
These calculations were made with the rate constants given in Table 1.  
The following observations can be made from Fig. 1 and other figures that are not shown here: 
1. The path of linear non-equilibrium has the same 1-D manifold as that of the chemical kinetics (Fig. 

1a) expected from the path coinciding with the chemical kinetic path to first order in the variable 
. 

2. The Newton-direction path has no 1-D manifold except when the initial non-equilibrium 
composition is far from the final equilibrium (Fig. 1b). 

3. The steepest gradient path (Fig. 1b) has a slightly different 1-D manifold from that of chemical 
kinetics because the Jacobian of Eq. 9 is the Hessian (Eq. 11), which is different from the 
Jacobian of Eq. 4. However, one of the eigenvectors of  at equilibrium (corresponding to a 1-D 
manifold) is very similar to that of the Jacobian of Eq. 4, especially for stiffer ordinary differential 
equation systems, and accordingly the 1-D manifold of the steepest gradient path is almost the same 
as that of the chemical kinetics. 

3.2 A   B   C   D: 2-D and 1-D manifolds 
Figure 2 shows the four paths (chemical kinetic path, the steepest gradient path, the Newton-direction 
path, and the path of linear non-equilibrium) for the reactions A   B   C   D projected into the 
concentration ( yA , yB , yC ) phase space; yD  is determined by element conservation:  

yA + yB + yC + yD = c       (22)  
These calculations were made with the rate constants given in Table 2. 
The following observations can be made from Fig. 2 and other figures that are not shown here: 
1. The path of linear non-equilibrium has the same 2-D manifold as that of the chemical kinetics (Fig. 

2a), though the former is appreciably different from the latter in the same 2-D manifold. 
2. The steepest gradient path (Fig. 2b) has a 2-D manifold that differs from both that of the chemical 

kinetics and that of the path of linear non-equilibrium, but the extent of the difference varies 
depending on the ratio of rate constants among different reactions. 

3. The Newton-direction path has no 2-D and 1-D manifolds except when the initial non-equilibrium 
composition is far from the final equilibrium (Fig. 2b). 

These results are qualitatively very similar to those described in the previous section. 

3.3 0-D manifold (equilibrium state) 
Figures 1 and 2 indicate that all four paths lead to the final equilibrium point (0-D manifold). 
Accordingly, they can be utilized to determine the equilibrium states and all of the three 
thermodynamic paths (the steepest gradient path, the Newton-direction path, and the path of linear 
non-equilibrium) can be used for equilibrium calculation without detailed information about the 
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reaction-rate constants. Any values of the rate constants consistent with the equilibrium constant 
produce good results, and only the equilibrium constants for each reaction must be known precisely.  

4. Summary 
In addition to the chemical kinetic path, three types of paths considered (the steepest gradient path, the 
Newton-direction path, and the path of linear non-equilibrium) have been calculated for simple 
reactive-system examples. The latter three paths are all based on the entropy production rate of 
reaction kinetics. We have found that the path of linear non-equilibrium (a completely new method) 
provides good approximations to the low-dimensional manifolds of the chemical kinetics, and all three 
paths based on the entropy production rate can be used for equilibrium calculation without any 
information other than the equilibrium constant of each reaction that occurs in the system. In principle 
our path of linear non-equilibrium is applicable to any non-isothermal cases with variable rate 
constants, and application for more complex reactive systems such as autocatalytic reactions is in 
progress. 

 Table 1: The dimensionless values of the rate constants employed for the calculations shown in Fig. 1 

Reaction A→2B 2B→C 
Figure Forward Backward Forward Backward 

1 1 1 0.5 0.5 

 

 

 

 

 

 

 

 

 

            a                                                                              b 

Figure 1. All four paths of the reactions A   2B   C projected onto the concentration ( , ) phase plane 
with a contour plot of .  (a) Chemical kinetic paths and the paths of linear non-equilibrium. (b) Steepest 
gradient paths and Newton-direction paths. Bold red lines are the chemical kinetic paths, magenta lines are the 
paths of linear non-equilibrium, orange lines are the Newton-direction paths, blue lines are the steepest gradient 
paths, green straight lines are in the direction of the eigenvectors of the chemical kinetic Jacobian at the 
equilibrium point, and blue straight lines are in the direction of the eigenvectors of the Hessian of . A black 
straight line that is hidden behind the green and blue straight lines indicates the quasi-steady state approximation 
with dyB dt = 0 . Points on the chemical kinetic paths indicate the dimensionless time from the initial states: 
0.1 (green), 0.5 (black), and 3 (green). The values of reaction rate constants are given in Table 1. 
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Table 2: The dimensionless values of the rate constants employed for the calculations shown in Fig. 2 

Reaction A → B B → C C → D 
Figure Forward Backward Forward Backward Forward Backward 

2 1 1 0.3 0.3 0.09 0.09 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           a                                                                        b 

Figure 2. All four paths of the reactions A   B   C   D projected into the concentration ( , , ) phase 
space. (a) Chemical kinetic paths and the paths of linear non-equilibrium. (b) Steepest gradient paths and 
Newton-direction paths. All the lines and points have the same meaning as described in the caption of Fig. 1, 
except for the black straight line that here indicates the quasi-steady state approximation with  and 

. The values of reaction rate constants are given in Table 2. 
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