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The so-called gradient relations, i.e., analyticaimulas that define the relationship between phrti
spatial derivatives (gradients) of pressure, dgnaitd gas particle velocity behind a plane detonat
front and the acceleration of the front, are oladimvithin the framework of a model based on the
assumption of isothermality of gas detonation potglult is shown that the relations can be used to
simplify the description of overdriven detonati@gimes in chemically reacting gas.

Introduction. If the motion of the medium behind the front oé tthock wave (the surface of strong
discontinuity) is described by the smooth one-disi@mal solution and the parameters ahead of the
front are constant, it is possible to give a onette correspondence between the partial spatial
derivative (gradient) of any gas-dynamic parameded the time derivative of the velocity
(acceleration) of the frordD/dt. For one-dimensional adiabatic flow of perfect,gasch gradient
relations at the front of the shock wave are prieskim [1, 2].

In [3], it was possible to remove restrictions citinoded by the model of perfect gas by using the
natural assumption on the notation form of the rifidcequation of state (internal energy) of medium
The assumption is based on the fact that in viewhefcalorific equation of state, the total intérna

energy of gatJ =U, +U , including the thermodynamic pdt, and the potential chemical energy

U, may be written in the form of the function of mese pand densityo: U =U(p, p). This

relation is valid for both inert media and reactnoducts in the state of chemical equilibrium. By
equilibrium flows of reacting gases one means dimivs in which the velocity of reaching the
chemical equilibrium much exceeds the velocity lodrege of the outer parameters, i.e., the chemical
reaction can be regarded as instantaneous one.résuli, more universal gradient relations are also
usable for the detonation front (strong discontinwith heat release) with allowance for heat dffec
Thus for the one-dimensional detonation wave (D\Wjppgating along the coordinate axisthey

have the form:
(ap) == {[3(A+l) AIM: ]@G‘LD},
or M; C dt
(@j =_1 {po [(2A+3) dj—;“ BCL}
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(@) =1 1 Pgarosarym]P PPl o
or). M7 -1|p C. dt
M. =(D-u)/c, A= 2t &P =1 2)IU,). .U, =(0U/ap),,

@am,)?*-1

where D is the front velocityu is the mass velocity is the equilibrium sound velocity is the
Mach number of the relative flow; by low indiceafd * we denote the parameter ahead of the front
(in the initial state) and at the wave front, regpely. From (1), it follows that the gradients gds-

dynamic functions are proportional to the acceienabf the frontdD/dt. Moreover, specific values
of the proportionality coefficients are definedthg functional dependend¢ =U (p, p) andD .

In the present work, the general formulas of gnatdieelations (1) are adapted for simplified
description of propagation of overdriven detonatimodes in a chemically reacting gas.

Isothermal Model of Detonation.Here is it assumed that for intensely explosive mextures with
chemical reaction temperature of about 2500—400€hK, equilibrium adiabatic index is close to
unity [4], i.e., detonation products (DP) are alintise isothermal medium and it is possible to

consider thatp/ 0 = const . Similar behavior of DP may be interpreted by st@ng dependence of

heat effect on temperature. Thus, in [5], it iswhahat due to the dissociation processes of gas
molecules, the total internal energy of DP is clas¢he step function with a sharp rise of values a
temperature of about 3000 K. Within the framewoikhis model, the gas-dynamic parameters at the
detonation front may be explicitly expressed imtgiof the velocity of fronD , namely, the degree of
DW overdriving

a=D/Dg,. 2)
Hereinafter, the lower index “CJ” is used to dertbieparameters of the stationary (steady) Chapman-

Jouget detonation.
The isothermal model of detonation includes théoWahg relations for the front of DW propagating

in a motionless explosive gag (= 0):

o.(D-u)=pD, p.+p(D-u)f =p,+p,D?, p/p =c% =const,  (3)
wherec, is an equilibrium sound velocity in DP. If one qoietes equations (3) by the Chapmen-
Jouget condition with respect to equilibrium sowetbcity
Cey = Dy ~ Uy, 4
it is possible to estimate the values of DP paramsedt the front of the Chapman-Jouget detonation
assuming that the velocity of the froby,; is given.

Usually, for DW, p. >> p, such that the initial pressure of the gas mixtegy be neglected. Then,
the solution of equations (3)-(4) yields

Ugy =Cqy =Dy 12, Pey =20, Poy =205 - ®)
By using these formulas, from relations (2) andvwi®)obtain the dependences of dimensionless front
parametersY, ={p./Pe, , 0./ Pc;,U. /Ug,} 0N the degree of overdriving :

p/pCJ=,0*/,00J:a(a+\/a2—l),LL/uCJ=a+\/aZ—1. (6)

Note that in comparison with exact equilibrium cédtions [4], the error of formulas (6) is smalbrF
example, it is less than 3 % far=1.2.

We demonstrate that the isothermal model is aldbsu#ed for the description of equilibrium flows
of DP. For this purpose, consider the problem ef itedium motion behind the front of the self-
sustaining plane DW arisen at the coordinate or{gar the wall) at timé =0 and propagating

along the coordinate axiswith constant velocit{D., . According to [6], the solution of this problem
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may be presented in the form of simple wave (trenfahn wave), which is defined by two ordinary
differential equations and the relation betweerf-satilar variabler/t, mass velocityu, and the
sound velocityc:

dp=pcldu, dpo=p/cldu, u+c=r/t (7)
provided that at the front of DW, gas-dynamic pagters of DP correspond to the Chapman-Jouget

state.
Figure 1 presents the numerical solution (soligd)n[7] of the considered problem in the form af th

dependence of dimensionless parameters of YDP{ P/ Py P/ Pey ,u/uCJ} on dimensionless
variabler/r. . This solution is obtained with allowance for tiift of the chemical equilibrium of
DP. The calculations are performed @t= 0.1013MPa andT, = 298.15K for the stoichiometric

acetylene-oxygen mixture 8, + 2.5Q (D, = 2424m/s). This figure also shows the approximate
solution (dashed lines) obtained in the form ofl@iaformulas in integrating (7) with allowancerfo
equations (3)-(6):

u _{Zr/r* -1 for 05<r/r. <1

Ug, 0, for 0<r/r. <05 -
nP - P - 2r/r.—2, for 05<r/r. <1
Pc; B Pc; B -1 forO0< r/r* <05

075

0.5

0.25

F/E
0 0.25 05 0.75 1

Fig. 1. Distribution of dimensionless DP paramet¥rdehind the front by the self-sustained plane DW:

1-0/Pey 2= P/ Pey s 3-U/Ug, , solid lines are the results of equilibrium caitidns [7], dashed lines are

the approximate solution (8).

0

It is obvious that solution (8) quite adequatelprapimates the results of numerical calculatiors [7
with relatively small error, which tends to zeroapproximation to the DW frontrﬁr* — 1). In this

connection, to describe the DW in gases in moreplgimvay, the following approach, which is
sufficiently universal, may be recommended.

Firstly, one calculates exact values of the vejooit front DS, and other equilibrium parameters

PS s Poy,Us, (for example, according to technique [4]) or usesll-known results of similar
calculations for a specific explosive mixture. Alher calculations are performed according to the
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approximate model (provided that the medium ishisonhic behind the front) for the dimensionless
parameters of DFY . Note that for the estimate of approximate valpes, O.,,Uc; as it is shown

above, it is sufficient to specify only the frontlecity (let D, = D¢,). Below, to obtain specific
gquantitative results, it is necessary to returditoensional variables using exact values of equilih
parameterspg,; , O5,,Ug, for the approximate solution to approximate thaatxsolution in the best
way.

Gradient Relations and Simulation of Overdriven DW.Assuming the isothermality of DP when the
conditions p/ p = constandU p = ® hold, by using (2)-(6), it is possible to transfoformulas (1)

in the form

i(@j _i(d_pj ___ 3M’+1  da
Pey \OF ). py\0r ). 2D ,MS(a”-1) dt’
2
i(@j =- M3 Qe e VaroL
Uy \ OF 2D Mi(a°-) a dt
Thus, we have gradient relations at the front afdgtonation, which have the following structure:
(aY/ar). =F(a) @a/dt,
where F(a) is the explicit function of degree of overdrivinlyloreover, in order to use these

(9)

relations, it is sufficient to know only the depende of current front position on time=r,(t) as
such dependence allows one to find the veloBity dr, /dt and accelerationlD/dt = d?r, /dt? of
the DW front and, hence, the valugsand da/dt. In addition, by using formulas (6), it is easy to
define other parameters at the froft.
This implies that knowing only the dependerice . (t) , we can construct the approximate solution
behind the DW front accurate to termgh?®) for any given timet :

Y =Y. -h(dY/ar). +o(h?), (10)
whereh =r, —r is the distance from the front to the point witle toordinate , at which the values

of parameters of DPY are defined. Similar solutions, as it is noted &), [may be applied in
interpretation of experimental data or investigat$ approximation of numerical difference schemes
near a moving boundary corresponding to the stdisgpntinuity.

It is known that the plane overdriven DW in gaschess the Chapman-Jouget mode=1) at infinity
without considering friction and heat-release lesstere, the distribution of gas-dynamic parameters
of DP behind the front in the limit correspondghe solution of considered problem (7). This soluiti

is described by formulas (8) in case of isothertyalf DP.

Obtained gradient relations (9) allow one to estalthe asymptotic law of propagation of overdriven
DW sufficiently easy. Thus, on the one part, @s— 1, from (9) and the natural dependence

D =aD,, =dr./dt, it follows that
().t an
Uy \OF ). a-1 dr.
On the other part, a — oo, from (8), it follows that
Uy \OF ) I
Comparing (11) with (12), we obtain the differehgguation for finding the asymptotic law
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2__1 fa
r*

a-1d’
After integrating, we find

(@-Dr2=rf or (i Bdi—lJ r>=r?  (r, = const).

D., dt
One more integration yields the asymptotic law rapagation of overdriven DW
D, (t—t,) =r.(1-r,/r. arctg(. /r,)), (13)

wheret, is some constant. This law implies that in degatiey of the overdriven DW into the
Chapman-Jouget wave, the coordinate of fiort 1. (t) tends to the asymptote

r —Dg,t = const.
It is essentially different from the behavior otthlane shock wave in degenerating it into acoustic

one since the shock wave has no asymptote. Notesithdar conclusions are firstly obtained in [9].
However, presented in [9], the asymptotic law

Dy (t —to) = 1. (1412 /r2 + ) a1
differs from (13). Deriving (14), one uses the asgtion on chemical inertness of DP (the heat releas
occurs only at the detonation front).

Conclusions. Thus, we obtained gradient relations at the détmmdront adapted for a simplified
description of overdriven gas detonation. It is wehothat these relations can be used in the
construction of approximate solutions of nonstaigrgas-dynamic problems.
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