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Abstract

For elucidation of the key mechanisms responsible for the transition from deflagrative to detonative
combustion in smooth-walled channels, a reactive flow with anisotropic thermal and molecular diffu-
sivities is considered. Setting the transverse diffusivities large compared to longitudinal diffusivities
the initially formed deflagration (despite no-slip boundary conditions) appears to be nearly planar and
not accelerating. This however does not prevent its eventual abrupt transition to the Chapman-Jouguet
detonation.

1 Introduction

Understanding of the key interactions controlling deflagration-to-detonation transition (DDT) remains
one of the major challenges of combustion theory. Premixed gas combustion in smooth-walled chan-
nels is apparently the simplest system for studying the DDT.Yet, even in this geometry the emerging
dynamical picture is too complex for straightforward identification of the mechanisms involved.
In the traditional attempt to explain the transition, the role of confinement is reduced exclusively to a
generation of hydrodynamic disturbances (turbulence). The latter promotes extension of the flame in-
terface resulting in the flame acceleration and enhancementof the flame-supported compression waves,
which allegedly leads to formation of hot-spots triggeringlocalized explosions and transition to deto-
nation [1]. Yet, recently it was realized that there is a complementary aspect of the flame-confinement
interaction. Apart from inducing hydrodynamic disturbances, the confinement also exerts resistance to
the gas flow, causing local precompression of the premixtureresulting in its preheating and autoignition.
The resistance appears to be an agency perfectly capable of provoking the DDT even if the predetona-
tion acceleration due to flame folding is deliberately suppressed and the system is regarded as effectively
one-dimensional [2]. In this approach, the confinement is accounted for phenomenologically through
the velocity-dependent drag-force term added to the momentum equation, while leaving the equation for
energy balance unaltered (Fanno’s hydraulic resistance model [3]).
As the Fanno model is not a rational approximation, its success should be perceived only as a good
argument in support of the resistance concept, rather than adefinite proof.1 In real-world systems,

1An attempt to put the Fanno model on a solid theoretical foundation for narrow channels has recently been undertaken in
[4].
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the interface extension and hydraulic resistance are invariably entangled, which makes the cause-effect
analysis very difficult. A rational isolation of elementarymechanisms is often attained as some of the
system’s parameters approach their limits. In the absence of a suitable small parameter, to split apart a
complex process, it is sometimes helpful to introduce an entirely artificial (book-keeping) parameter of
expansion. This is precisely the strategy we intend to adopt.

2 Formulation

Let us artificially make the system diffusively anisotropic. Specifically, we’ll keep the kinematic vis-
cosity isotropic while setting the transverse thermal and molecular diffusivities large compared to their
longitudinal counterparts and viscosity.
In suitably chosen units the set of modified Navier-Stokes equations for a compressible reactive flow
then reads (cf. [5]),
continuity and state,
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∂û

∂x̂
+

∂v̂

∂ŷ
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∂ŷ2
+

∂

∂x̂

(

∂û
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chemical kinetics,
Ŵ = Zρ̂2Ĉ exp

(

Np(1 − T̂−1)
)

(7)

Hereα is the anisotropy factor;̂P = P/P0 is the scaled pressure in units of the initial pressure,P0;
Ĉ = C/C0, scaled concentration of the deficient reactant in units of its initial value,C0; T̂ = T/Tp,
scaled temperature in units ofTp = T0+QC0/cp, adiabatic the temperature of burned gas under constant
pressure,P0; T0 is the initial temperature of unburned gas;Q, heat release;σp = T0/Tp; γ = cp/cv ;
cp, cv, specific heats;ǫ = (up/ap)

2, scaled longitudinal thermal diffusivity, whereup, velocity of
the free-space (isobaric) deflagration relative to the burned gas is regarded as a prescribed parameter;
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ap =
√

γ(cp − cv)Tp, a0 =
√

γ(cp − cv)T0, sonic velocities atT = Tp andT = T0, respectively;
(û, v̂) = (u, v)/ap, scaled flow velocity;Np = E/RTp, scaled activation energy;̂ρ = ρ/ρp, where
ρp = P0/(cp − cv)Tp, density of the combustion products in free-space deflagration; t̂ = t/tp, (x̂, ŷ) =
(x, y)/xp, xp = aptp, wheretp = A−1Z exp (Np) is the reference time;Z = 1

2
Le−1N2

p (1−σp)
2 is the

normalizing factor to ensure that atNp >> 1 and adiabatic free-space conditions the scaled deflagration
velocity relative to the burned gas is close to

√
ǫ; A, pre-exponential factor;Pr, Le - are the Prandtl and

Lewis numbers, respectively. In the adopted formulation the molecular transport coefficients as well as
specific heats are assumed to be constant.
As may be readily shown,xp = aptp = lth/

√
ǫ, wherelth = Dp

th/up is the flame width;Dp
th, thermal

diffusivity at T = Tp.
The reaction rate (7) is modeled by a single step Arrhenius kinetics. The latter is assumed to be of the
first order with respect to the deficient reactant and of the second order with respect to the density, to
account for the binary nature of chemical reaction taking place in real combustion systems.
Eqs (1)-(7) are considered over a strip0 < x̂ < ∞, −d̂/2 < ŷ < d̂/2, and subjected to the adiabatic
and non-slip boundary conditions, and closed-end ignition(initial) conditions [5,6].

3 Numerical simulations

To avoid too large a disparity between the spatio-temporal scales involved, the numerical simulations
are conducted for a thin channel and reduced values of the activation energyNp and the inverse Mach
numberap/up, compared to those typical of real-life explosives. Specifically, we set,

Np = 4, ap/up = 10, σp = 0.2, Le = 1, P r = 0.75, γ = 1.3, (8)

l̂ = 0.1, d̂ = 1 α = 1, 10, 15, 20, 30, 100.

For the chosen parameter set the channel’s width is1/
√

ǫ = 10 -times the flame widthlth. The flame
burning velocityu0 = σpup is

√
ǫσp = 0.045 -times the unburned gas sonic velocitya0.
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Figure 1: Isotropic case (α = 1). Reaction zone configurations (maximum̂W ) at several consecutive
equidistant instants of time. Frame (a) corresponds to deflagrative burning;0 < t̂ < 30, ∆t̂ = 0.5.
Frame (b) covers the transition event;30 < t̂ < 34.6, ∆t̂ = 0.1. Note the islands of unburned gas
formed near the wall immediately after the autoignition event (see also [6]). In all the figures, the hats
on the labels have been omitted.

The computational method used and its validation are described in [5].
Some results of numerical simulations are depicted on Figs.1-6.
Figures 1,2 show configurations of the reaction zone at several consecutive instants of time for the
isotropic and strongly anisotropic cases. Figures 3,4 showthe longitudinal profiles of pressure, temper-
ature, density, and flow-velocity at several equidistant instants of time adjacent to the transition point.
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Figure 2: Anisotropic case (α = 100). Reaction zone configurations at several consecutive equidistant
instants of time:0 < t̂ < 290, ∆t̂ = 10. Note the disparity between the transverse and longitudinal
scales (10-fold compression)

Figure 5 shows flow-fields at two instants of time adjacent to the transition point. Figure 6 shows time-
records for the reaction-wave propagation velocities at different levels of the anisotropy.
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Figure 3: Isotropic case (α = 1). Profiles of the scaled pressurêP , temperaturêT , flow-velocity û, and
densityρ̂ along the channel’s symmetry plane (ŷ = 0) at several equidistant instants of time;0 < t̂ < 36,
∆t̂ = 3.

4 Discussion

At high anisotropy (α = 100), due to no-slip boundary conditions, the developing flow preserves its two-
dimensional nature (Fig. 5). However, owing to strong transverse diffusivities the emerging temperature
and concentration fields become nearly one-dimensional2. As a result the initially formed deflagration
appears to be nearly planar and not accelerating. This however does not prevent the eventual DDT,
although the corresponding DDT-time and distance are considerably longer than in the isotropic case
where the flame is folded and accelerates virtually from the moment of its inception (Fig.6).
Upon the transition (irrespective of the anisotropy) the detonation velocity settles at the same level given
by the classical Chapman-Jouguet relation,

D ≃
√

2(γ2 − 1)QC0 (9)

2The corresponding iso-lines are just straight lines orthogonal to the channel’s walls, and being not very informative,are
not shown here.
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Figure 4: Anisotropic case (α = 100). See the caption for Fig. 3;0 < t̂ < 330, ∆t̂ = 30.

or in the scaled form,

D̂ ≃

√

2(γ + 1)(1 − σp) = 1.918 (10)

The above observations clearly lend extra weight to the assertion that the flame-folding and acceleration
are not crucial for the transition, although they certainlyhelp.
It is interesting that similar suppression of the flame-folding and acceleration may be achieved for the
familiar limit of small-heat-release [7].
Accounting for heat losses by adopting, for example, Newtonboundary conditions will complicate the
picture: an effective suppression of the folding will be blocked. Moreover, at a largeα a self-sustained
combustion spread will become unfeasible. Yet at a moderateα, in line with the isotropic case [6,8], the
DDT-time will increase.
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Figure 5: Advancing reaction zone (bold line) and the induced flow field at two instants of time adjacent
to the transition event; (a) t̂ = 261 - deflagration, (b) t̂ = 331 - detonation.
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Figure 6: Temporal evolution of the reaction wave propagation velocity at different levels of anisotropy:
α = 1 (1), α = 10 (2), α = 15 (3), α = 20 (4), α = 30 (5), α = 100 (6); D̂CJ corresponds to the
Chapman-Jouguet detonation,â0, âp - to the sonic velocities in fresh and burned gas, respectively.
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