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1. Introduction 
Lean premixed combustion is highly advantageous in reducing nitrogen oxide (NOx) emission 

from gas-turbine engines without the loss of combustion efficiency by controlling the equivalence 
ratio to within an appropriate range.  This combustion method has attracted considerable attention 
from developers of gas-turbine combustors.  One main drawback of lean premixed combustors, 
however, is that they are susceptible to flow perturbations.  They suffer from combustion instabilities 
such as thermoacoustic combustion oscillations, lean blowout and flashback.  Among these, 
thermoacoustic combustion instability, caused by the strong coupling between the variations in 
pressure and heat-release rate, is considered to be a serious problem since it can lead to a reduction in 
lifespan or even the total destruction of an engine.  The physical mechanism underlying the onset of 
thermoacoustic combustion instability and efficient suppression methods for the combustion instability 
have been extensively investigated for various types of laboratory-scale gas turbine combustor with 
swirling flow, which is summarized in detail in a recent review paper edited by Huang and Yang [1].   

Regarding the treatment of unstable behaviors in the combustion process induced by the thermo-
acoustic instability, the power spectral analysis of the pressure and heat-release fluctuations has been 
performed in most studies [2-5].  This method of linear analysis is capable of detecting the excitation 
of unstable combustion modes, but may be insufficient for fully understanding the underlying physics 
of combustion instabilities because they are complex phenomena strongly affected by the inherent 
nonlinearity associated with chemical reactions, turbulent flow and acoustic perturbations.  Therefore, 
a new approach based on nonlinear dynamics will become significant for the treatment of the 
combustion instabilities in gas-turbine combustors.  
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A nonlinear time series approach inspired by chaos theory is becoming an increasingly reliable 
tool for clarifying the nonlinear properties of complex dynamics, and its importance has been 
discussed in previous combustion researches [6-9].  In a recent work, we have successfully extracted 
the deterministic nature in the combustion instability in a lean premixed gas-turbine combustor by 
using a nonlinear time series analysis [10].  The purpose of this study is to investigate the possibility 
on whether or not the nonlinear time series analysis is applicable to predict the short-term dynamic 
behavior of the combustion instability in a lean premixed gas-turbine combustor. 
 

2. Experiments 
The configuration of the experimental system is shown in Fig. 1.  This system is identical to that 

used in the previous study [11].  The combustion test rig is composed of a blower, an electric heater, a 
mixing tube, an axial swirler and a combustion chamber.  The chamber has a length of 630 mm with a 
100  100 mm square cross section.  The rest of the chamber is composed of a water-cooled stainless-
steel duct.  Methane gas is used for the main fuel and is injected through multiple orifices at a location 
260 mm upstream from the inlet of the combustion chamber.  An axial swirler is installed as a flame 
holder at the inlet of the combustion chamber.  The active control by a secondary fuel injection [11] is 
out of the scope of this work because this work focuses on the investigation of the dynamic behavior 
of the combustion instability.  The inlet air temperature and air mass flow rate are 700 K and 78 g/s.  
The equivalence ratio  = 0.45 is selected in the current experiment because it is under the condition 
that the intermittent combustion instability occurs (see Fig. 2). 

To investigate the dynamic behavior of the combustion instability, the pressure fluctuations are 
measured by pressure transducers (Kulite Semiconductor Products, Model XTEL-190-15G).  A 
pressure port, PT1, is placed on the wall of the mixing chamber.  The other ports, PT2-PT4, are 
located on the wall of combustion chamber.  Signals from the pressure transducers are acquired 
simultaneously through a multi channel data acquisition system (Ono Sokki, DS-2000).  The sampling 
frequency of the obtained time series is 25.6 kHz.  In this work, the nonlinear time series analysis is 
applied to the time series data of the pressure fluctuations p’ obtained from transducer PT2 because the 
influence of thermo-acoustic coupling strongly appears in the time series data of the measured location.  
Note that the nonlinear time series analysis is implemented for the time series data of the pressure 
fluctuations p’ at the sampling frequency 5.12 kHz. 

 

3. Nonlinear time series analysis based on chaos theory 
The sensitivity of the time evolution of a system to small changes in initial conditions is a 

critical characteristic of chaos, which causes the exponential decay of predictability with time.  This 
effect is known as short-term predictability followed by long-term unpredictability.  In this work, we 
use this concept to predict the time variation in the pressure fluctuations.   

On the basis of Takens’ embedding theorem [6-10], the phase space is constructed from the time 
series data of the pressure fluctuations p’.  The time-delayed coordinates used for the construction of 
the phase space are expressed as 
 

            1,,2,, ''''  Dtptptptpti X    1  
 

where i = 0, 1,  , n (n is the data number of the time series), X(ti) is the phase space vectors, 
p’(t) is the pressure fluctuations at time ti, D is the embedding dimension, that is, the dimension of the 
phase space, and   is a time lag.  As used in the previous paper [6-10],  is set to be the time lag that 
yields a local minimum of mutual information. 

  We first divide the time series data into first and second parts.  The first part is used as a source 
for generating data library, and the second part is used as reference data for comparison with the 
predicted time series data.  A set of neighbors of the vector X(tp), which are described by X(tk) (k = 1, 
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2,…, K), are first searched for from all the points in the phase space, where X(tp) is the final point of 
trajectory of the phase space constructed from the data library.  After T steps, X(tk) is mapped to the T 
step ahead prediction X(tk + T).  X(tp + T) is expressed as follows: 
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where dk = || X(tp) - X(tk) ||.  The predicted time variation of the pressure fluctuations is obtained 
inversely from X(tp + T).   

 

3. Results and Discussion 
The time variation of the predicted pressure fluctuations, together with the measured pressure 

fluctuations, is shown in Fig. 3.  Note that the pressure fluctuations measured over 21 s are used as the 
data library to predict the time variation of the pressure fluctuations.  The predicted pressure 
fluctuations follow the measured pressure fluctuations for approximately the first 12 cycles.  However, 
they gradually diverge from the measured pressure fluctuations, showing an inconsistency in the 
amplitude at t  21.06 s.  This result clearly indicates that the nonlinear time series analysis we applied 
in this work is feasible for predicting the short-term dynamic behavior of the pressure fluctuations.   In 
this work, we predict the time variation of the pressure fluctuations by updating the data library of the 
phase space before losing the determinism of trajectories in the phase space, which is needed to 
predict the pressure fluctuations with high accuracy.  The schematic of the method of prediction by 
updating the data library is shown in Fig. 4.  As a first step, the prediction of the pressure fluctuations 
for 10 cycles is implemented.  The prediction of the second step is made using the data library, to 
which the measured pressure fluctuations of the first step have been added.  This process is iterated for 
n steps, keeping the amount of the data in the data library constant.   

The time variation of the predicted pressure fluctuations obtained by updating the data library, 
together with the measured pressure fluctuations, is shown in Fig. 5. The predicted pressure 
fluctuations correspond to the measured pressure fluctuations.  To quantitatively evaluate the degree of 
coincidence between the predicted and measured pressure fluctuations, the amplitude ratio Ap /Am 
(where Ap is the standard deviation of the predicted pressure fluctuations and Am is the standard 
deviation of the measured pressure fluctuations in each 20 cycles starting from N = 0) and the phase 
lag  between the predicted and measured pressure fluctuations in each 20 cycles starting from N = 0 
are shown in Fig. 6 as a function of the number of cycles of pressure fluctuations, N.  Ap /Am and  is 
nearly 0.9 and 0, respectively.  This result clearly shows that the degree of coincidence between the 
predicted and measured pressure fluctuations is sufficiently high, and that by updating the data library 
of the phase space, the nonlinear time series analysis we applied in this work is valid for predicting the 
intermittent nature of the pressure fluctuations with relatively high accuracy.  In addition to the 
applicability of the nonlinear time series analysis for identifying deterministic chaos [10], the results 
obtained in this work demonstrate that the nonlinear time series analysis has sufficient potential use 
for predicting the pressure fluctuations of the combustion instability in a lean premixed gas-turbine 
combustor, and that it may be worthwhile from a practical viewpoint.  We need to examine whether 
and to what extent the nonlinear time series analysis is feasible for predicting the short-term pressure 
fluctuations by decreasing the size of the data library.  This issue will be presented in this presentation 
in details. 
 
 
 



Ikawa. T                                    Nonlinear dynamics in combustion instability 

23rd ICDERS – July 24-29, 2011 – Irvine 4 

Summary 
The nonlinear time series analysis based on the concept of orbital instability in phase space has 

been performed to predict the time variation of the pressure fluctuations for  = 0.45, for which 
neighboring trajectories in the phase space exhibit a deterministic nature [10].  The time variation of 
the predicted pressure fluctuations obtained by updating the data library coincides closely with those 
of the measured pressure fluctuations.  This result shows that the nonlinear time series analysis we 
applied in this work has sufficient potential use for predicting the short-term dynamic behavior of the 
combustion instability with high accuracy, which has not been previously reported in the fields of 
combustion science and physics. 
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Figure 1. Schematic of experimental system
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Figure 2. Time variation of pressure fluctuations p’ at equivalence ratios  = 0.45.

Figure 4. Schematic of the prediction method involving updating the data library of the phase space 
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Figure 3. Time variation of pressure fluctuations p’ at equivalence ratios  = 0.45.
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Figure 5. Time variation of pressure fluctuations p’ at equivalence ratios  = 0.45.
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Figure 6. Variations of phase delay  and amplitude ratio Ap /Am as a function of the number 
of cycles of pressure fluctuations, N at equivalence ratios  = 0.45 


