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1 Introduction

Most fuels, and in particular hydrogen, are characterized by chain-branching kinetics. Typically, initiation
is rather slow compared to chain-branching. In that situation, even if the von Neumann point lies inside the
chain-branching region, a thin zone of intense reaction separates long initiation and completion regions [1].
Stability will then be affected mainly by modes with a frequency that resolves themain reaction zone. The
current work presents a formulation in the slow initiation limit, in the framework of the stationary solution
formulated by B́edard-Tremblay et al [1].

2 Formulation

The problem is described by the two-dimensional, transient Euler’s equations, with chemistry described
by [2,3]

∂λ1

∂t
+ u · ∇λ1 = −rI − rB,

∂λ2

∂t
+ u · ∇λ2 = rI + rB − rT (1)

in which

rI = λ1kI exp
−EI

T
, rB = ρλ1λ2kB exp

−EB

T
,

rT = λ2kT (2)

Boundary conditions include the preshock state forx → −∞, On the right, boundary conditions are non-
reflective, i.e. forx → ∞, the left-going Riemann invariant is zero. The problem has been made dimen-
sionless scaling density and temperature by their preshock (x → −∞) values, velocity by the preshock
speed of sound, the heat release by the preshock speed of sound squared, and finally, pressure byγ times
the preshock pressure. Time is scaled by a valueτ that resolves the main chain-branching zone, and length,
by the preshock speed of sound timesτ . Rates have been scaled by1/τ . Chemistry is taken to be negligible
at the conditions corresponding to the left boundary conditions.
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The steady one-dimensional reference solution is then, using the local Mach number as the independent
variable [1],

√
T =

M(γM2
0 + 1)

M0(γM2 + 1)
, ρ =

M2
0 (γM

2 + 1)

M2(γM2
0
+ 1)

, u =
M2(γM2

0 + 1)

M0(γM2 + 1)
, p =

γM2
0 + 1

γ(γM2 + 1)
, (3)

and introducing the heat releaseq,

∆ = ∆N − q

Q
, ∆N =

(M2
0 − 1)2

2M2
0
(γ2 − 1)Q

, ∆ = ∆N − 1 + λ1 + λ2 (4)

M2 =
γM2

0 + 1±
√

2M2
0
(γ2 − 1)Q∆

γM2
0
+ 1∓ γ

√

2M2
0
(γ2 − 1)Q∆

(5)

in which the lower, subsonic branch describes the post-shock detonationwave structure. Index N represents
the von Neumann point. Introducing

κ =
(γ − 1)(1− γM2)

1−M2

Q

TN

(6)

T andq are related by
dT

κTN

=
dq

Q
= −d∆ = −d(λ1 + λ2) (7)

Next, writing

ǫ =
kI
kB

exp
EB − EI

TN

(8)

a = ρN exp

(

EB

TB

− EB

TN

)

= ρNkB exp
−EB

TN

, θ =
EB

TN

(

1− TN

T

)

=
EB

TN

− EB

T
(9)

and assumingǫ << 1, in the initiation zone,

λ2 =
aǫ

ρN (a− 1)

[

exp
(a− 1)x

uN
− 1

]

(10)

λ1 = 1 +
ǫax

M0(a− 1)
− ǫa2

ρN (a− 1)2

[

exp
(a− 1)x

uN
− 1

]

(11)

θ =
EB

TN

aǫκN
ρN (a− 1)2

[

exp
(a− 1)x

uN
− 1− (a− 1)x

uN

]

(12)

In the main chain-branching zone, using

x =
−uN log ǫ

a− 1
+ ξ (13)

one finds that if within the chain-branching region, i.e. ifa > 1,

λ1 = exp

∫

∆

∆N

ρ

ρN

a

kT
exp θd∆ (14)

ξ =
uN
a− 1

log
ρN (a− 1)2(∆N −∆)

a
− uN

∫

∆

∆N

[

ρN
ρ

1

kTλ2

− 1

(a− 1)(∆N −∆)

]

d∆ (15)
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The formulation for the main reaction zone remains valid only as long as it yields positive values for∆ and
λ2. The latter would imply an underdriven wave. If that is not the case, however,λ2 is found to return to zero
before all the fuel is consumed, for∆ = ∆∗∗. Beyond that point, there is no longer any chain branching,
andλ2 becomes of orderǫ again, with value

λ2 =
ǫaλ1 expEIθ/EB

kTρN − aρλ1 exp θ
(16)

and transition occurs at∆ = ∆∗∗, determined as the solution of

∆∗∗ −∆N + 1 = λ∗∗

1 = exp

∫

∆∗∗

∆N

ρa

ρNkT
exp θd∆ (17)

3 Perturbation

Introducing perturbations, denoted for instance byu′ for velocity and likewise for the other variables, and,
taking into account that the coefficients depend uponξ but nott or y, thus writing the solution in Fourier
space in time and iny, the perturbation problem can be written as

u
dρ′

dξ
= −

(

iω +
γp

γp− ρu2
du

dξ

)

ρ′ +

(

γp− 3ρu2

ρu2
du

dξ
− iω

)

ρ2uu′

γp− ρu2

+
ikρ2u2

γp− ρu2
v′ +

ρ

γp− ρu2

(

iω + γ
du

dξ

)

p′ − (γ − 1)ρ2QkT
γp− ρu2

λ′

2 (18)

(γp− ρu2)
du′

dξ
= ρ′u2

du

dξ
+

(

iω + 2
du

dξ

)

ρuu′ − iγpkv′ −
(

iω + γ
du

dξ

)

p′ + (γ − 1)ρQkTλ
′

2 (19)

ρu
dv′

dξ
= −iωρv′ − ikp′ (20)

(ρu2−γp)
dp′

dξ
= ρ′uγp

du

dξ
+

[

iωγp+ (ρu2 + γp)
du

dξ

]

ρu′−iγρupkv′−
(

iω + γ
du

dξ

)

ρup′+(γ−1)ρ2uQkTλ
′

2

(21)

u
dλ′

1

dξ
= −iωλ′

1 − a
ρ

ρN
λ1λ2

(

ρ′

ρ
+

λ′

1

λ1

+
λ′

2

λ2

+ θ′ − u′

u

)

exp θ (22)

u
dλ′

2

dξ
= −iωλ′

2 + a
ρ

ρN
λ1λ2

(

ρ′

ρ
+

λ′

1

λ1

+
λ′

2

λ2

+ θ′ − u′

u

)

exp θ − λ′

2kT +
u′

u
λ2kT (23)

in whichω is the complex frequency, andk is the (real) transverse wavelength.

Boundary conditions are obtained by setting to zero the Riemann variables coming from the ends into the
solution domain, on both sides. Indeed, in the limitǫ → 0, the lengths of both the initiation and the
termination zone become infinite so that waves at the higher frequencies thatresolve the reaction zone will
never have time to reflect and return to the reaction zone. This avoid havingto deal with refelction at the
shock in the presence of shock oscillations, focusing the problem to the effect of the main reaction zone.

Whenξ → −∞,

λ′

2 → C exp
(a− 1)ξ

uN
exp

−iωξ

uN
(24)
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thus theλ2 perturbation becomes small, while other values do not. Chemistry becomes

iωλ′

1 + u
dλ′

1

dξ
= −aλ′

2 (25)

iωλ′

2 + u
dλ′

2

dξ
= (a− 1)λ′

2 (26)

This suggests that we write all variables (such asλ′

2) as

λ′

2 = Λ2(ξ) exp
(a− 1− iω)ξ

uN
(27)

then, using symbolsΛ for mass fraction perturbations,R for the density perturbation,U andV for velocity
perturbations,P for pressure, we have that

dX

dξ
= AX (28)

in which

X =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R
U
V
P
Λ1

Λ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14 0 a16
a21 a22 a23 a24 0 a26
0 0 a33 a34 0 0
a41 a42 a43 a44 0 a46
a51 a52 0 a54 a55 a56
a61 a62 0 a64 a65 a66

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(29)

in which the various coefficientsaij are readily found from the equations above.

Finally, given that a numerical solution will be required, the domain is expressed as a function of∆ rather
thanξ:

d

dξ
=

d

d∆

d∆

dξ
(30)

thus
d

dξ
= −kTρλ2

M0

d

d∆
(31)

The system becomes
dX

d∆
= − M0

kTρ(∆−∆N + 1− λ1)
AX (32)

which, given that integration now starts at∆N , whereλ1 = 1, does not satisfy a Lipschitz condition.
However, the matrixA is singular, at∆N , leaving one degree of freedom. Thus, one can express the
solution as a combination of modes coming from the right, plus a constant. Integration is pursued until
∆ = ∆∗∗.

4 Numerical solution

The eigenvalue problem requires a numerical solution. The procedure sthen similar to that used by Lee &
Stewart [4]. A fourth order accurate Runge-Kutta integration solves thesystem above for assumed frequency
and assumed values of the amplitudes for the mode coming from the right. Then acarpet search identifies
rough regions where eigensolutions lie. Finally, in the neighborhood of aneigensolution, an iterative scheme
of Newton-Raphson type determines the eigenvalues. A continuation method is used to explore the effect
of varying global input parameters.

23
rd ICDERS – July 24–29, 2011 – Irvine 4



Megumi Lopez-Aoyagi Stability of chain-branched detonations

Acknowledgments

Research supported by the NSERC Hydrogen Canada (H2CAN) Strategic Research Network, and by the
NSERC Discovery Grants program.

References

[1] Bédard-Tremblay, L., Melguizo-Gavilanes, J. and Bauwens, L. (2009)Detonation structure under
chain-branching kinetics with small initiation rate, Proc. Combust. Inst., 32: 2339-2347.

[2] Short, M., Dold, W. (1996) Unsteady gasdynamic evolution of an induction domain between a contact
surface and a shock wave. I: Thermal Runaway, SIAM J. Appl. Math.,56: 1295-1316.

[3] Short, M., Quirk, J.J. (1997) On the non-linear stability and detonability limitof a detonation wave for
a model three-step chain-branching reaction, J. Fluid Mech., 339:89-119.

[4] Lee, H. I. and Stewart, D. S. (1990) Calculation of linear detonation instability: One-dimensional
instability of plane detonation, J. Fluid Mech., 216:103-132.

23
rd ICDERS – July 24–29, 2011 – Irvine 5


	Introduction
	Formulation
	Perturbation
	Numerical solution

