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1 Introduction

Most fuels, and in particular hydrogen, are characterized by chaimehing kinetics. Typically, initiation

is rather slow compared to chain-branching. In that situation, even if thd&leomann point lies inside the
chain-branching region, a thin zone of intense reaction separates ltatian and completion regions|[1].
Stability will then be affected mainly by modes with a frequency that resolves#ie reaction zone. The
current work presents a formulation in the slow initiation limit, in the framework efdtationary solution

formulated by Bdard-Tremblay et al [1].

2 Formulation

The problem is described by the two-dimensional, transient Euler's eqsatigth chemistry described

a—tl—ku-V/h:—7’1—7’3,87:+H'V)\2=7“1+7‘B—7°T 1)
in which

—-F
rr = )\1]{[ exp TI, rp = p)\l)\QkB exp
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Boundary conditions include the preshock stateafor» —oc, On the right, boundary conditions are non-
reflective, i.e. forr — oo, the left-going Riemann invariant is zero. The problem has been made dimen-
sionless scaling density and temperature by their preshock (—oo) values, velocity by the preshock
speed of sound, the heat release by the preshock speed of smamddscand finally, pressure bytimes

the preshock pressure. Time is scaled by a valtiat resolves the main chain-branching zone, and length,
by the preshock speed of sound timeskates have been scaled byr. Chemistry is taken to be negligible

at the conditions corresponding to the left boundary conditions.
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The steady one-dimensional reference solution is then, using the locdl Manber as the independent
variable [1],
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and introducing the heat releage
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in which the lower, subsonic branch describes the post-shock detomati@structure. Index N represents
the von Neumann point. Introducing

A=Ay -1+ + A (4)
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T andq are related by
dI' dq
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Next, writing
ki Ep — Ep
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and assuming << 1, in the initiation zone,
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In the main chain-branching zone, using
—uy1
a—1
one finds that if within the chain-branching region, i.ea if- 1,
A
AL = exp/ ra exp O0dA (14)
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The formulation for the main reaction zone remains valid only as long as it yieklsye values forA and

Ao. The latter would imply an underdriven wave. If that is not the case, hewv; is found to return to zero
before all the fuel is consumed, fdx = A**. Beyond that point, there is no longer any chain branching,
and )\, becomes of orderagain, with value

E/0/FE
)\2 _ 6&)\1 exp ]9/ B (16)
krpn — apAiiexpf
and transition occurs d = A**, determined as the solution of
A**
A™ —An+1=\"= exp/ exp 0dA a7
Ay PNET

3 Perturbation

Introducing perturbations, denoted for instanceubjor velocity and likewise for the other variables, and,
taking into account that the coefficients depend u@dut nott or y, thus writing the solution in Fourier
space in time and ig, the perturbation problem can be written as
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in whichw is the complex frequency, aridis the (real) transverse wavelength.

Boundary conditions are obtained by setting to zero the Riemann variabtesgérom the ends into the

solution domain, on both sides. Indeed, in the limit— 0, the lengths of both the initiation and the
termination zone become infinite so that waves at the higher frequencigstbbite the reaction zone will

never have time to reflect and return to the reaction zone. This avoid htavahegal with refelction at the

shock in the presence of shock oscillations, focusing the problem toftet ef the main reaction zone.

When¢ — —oo,

Ny — Cexp (a=1)¢ exp i (24)
uN uN
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thus the), perturbation becomes small, while other values do not. Chemistry becomes
d\]

iwA] + ud—5 = —al, (25)
d /
WAy + ud)\; = (a— 1)\, (26)
This suggests that we write all variables (such\gsas
(a—1—iw)é

Ny = Aa(§) exp (27)

uN
then, using symbola for mass fraction perturbationg, for the density perturbatiod/ andV" for velocity

perturbationsP for pressure, we have that
dX

& = AX (28)
in which
R air a2 a3 ais 0 ag
U ag1 age a3 azs 0 ag
|4 0 0 a3z as4 0 0
X= P A= ag1 age a43 ass 0 age (29)
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in which the various coefficients; are readily found from the equations above.

Finally, given that a numerical solution will be required, the domain is espias a function oA rather

than¢:
d d dA

RN (30)
thus p brohe d
TPA2
- . 1
d¢ My dA (31)
The system becomes
X _ Mo AX (32)

dA ~ kpp(A —An+1—Xp)
which, given that integration now starts Aty, where\; = 1, does not satisfy a Lipschitz condition.
However, the matrix4 is singular, atAy, leaving one degree of freedom. Thus, one can express the

solution as a combination of modes coming from the right, plus a constant. dtitegis pursued until
A = A,

4 Numerical solution

The eigenvalue problem requires a numerical solution. The procedbea similar to that used by Lee &
Stewart[[4]. A fourth order accurate Runge-Kutta integration solvesysiem above for assumed frequency
and assumed values of the amplitudes for the mode coming from the right. Tdaepet search identifies
rough regions where eigensolutions lie. Finally, in the neighborhood eigmsolution, an iterative scheme
of Newton-Raphson type determines the eigenvalues. A continuation methseldsaiexplore the effect
of varying global input parameters.
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