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1 Introduction

The propagation of premixed flames in narrow channels or tubes is an important topic in several areas
of combustion research. Emerging technologies such as the development of microscale combustors
as a power source for portable devices (e.g. laptops or cell-phones) depend critically on this type of
configuration [1]. A large number of papers addressing the issue of flame sustainment and propagation
in narrow vessels have appeared in recent years, addressing a range of issues such as heat recirculation,
heat loss, catalytic wall effects, Lewis number effects and others (e.g. [2–5]).

Of particular relevance to the current study is the constant density, narrow channel flame propagation
studies of Daou and Matalon [6] (for adiabatic walls) and Daou and Matalon [7] (for non-adiabatic
walls), as well as the variable density, narrow channel, flame propagation study of Short and Kessler [8]
(for adiabatic and non-adiabatic walls). As part of the study in [7], Daou and Matalon examined the
behavior of thick flames (the flame width being significantly larger than the channel height) in a non-
adiabatic channel, applying a Newton cooling law along the channel wall. The thick flame limit analysis
of [6, 7] was extended to variable density flows by Short and Kessler [8]. It was shown that thermal
expansion of the hot combustion gases in a narrow channel induce a Poiseuille flow in the channel that
has a significant effect on the dynamics of flame propagation.

The current work extends that of Short & Kessler [8] by considering the role played by a conductive
solid wall between the channel and an outer insulation layer. The analysis is a formal asymptotic study
invoking the thick flame limit (the Peclet number (Pe) is small). Heat losses on the outer part of the wall
must be restricted to O(Pe2). We also find that the ratio of the wall height to channel height must scale
with the ratio of gas thermal conductivity to wall thermal conductivity. Commonly used microburner
wall materials such as quartz (heat conductivity of 1.7 × 10−2 W/cm K, density of 2.2 g/cm3 and a
heat capacity of 0.8 J/g K) have a moderately large ratio of wall to gas thermal conductivities (e.g.
quartz/air has a thermal conductivity ratio of ∼ 100). A 5 mm channel would then require a 50 µm
quartz wall thickness. Other more exotic wall materials could also be considered, e.g. aerogel (thermal
conductivities in the range of 4×10−5 W/cm K to 3×10−4 W/cm K). In principle, with such materials,
the height of the wall material could be comparable to the channel height.
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Figure 1: Schematic of the channel configuration

2 Model

Channel Flow: Variable density premixed flame propagation in a two-dimensional channel bounded by
inert walls is considered (fig. 1). In non-dimensional form, and for a one-step reaction mechanism, the
zero Mach number Navier-Stokes equations are

Dρ
Dt

= −ρ(∇ · u), ρ
Dui
Dt

= −∇p+
1

Re
∇ · τ, ρT = 1,

ρ
DT
Dt

=
1
Pe
∇2T +QPeR, ρ

DY
Dt

=
1

LePe
∇2Y − PeR,

(1)

for temperature T (= T̃ /T̃0), fluid velocity ui = (u, v) (= ũi/s̃F ), density ρ (= ρ̃/ρ̃0), pressure p =
([p̃− p̃r]/ρ̃0s̃

2
F ) and fuel mass fraction Y (= Ỹ /Ỹ0). The temperature scale T̃0 is set so that T = 1 in the

fresh mixture (where Y = 1), while s̃F is the laminar flame speed and ρ̃0 = p̃r/(R̃T̃0/W̃ ). The length
scale is the half channel height ã and the time scale is ã/s̃F . The nondimensional groups are the Peclet
number Pe = PrRe, where Re (Reynolds number) = ρ̃os̃F ã/µ̃ and Pr (Prandtl number) = µ̃c̃p/λ̃,

the Lewis number Le = λ̃/c̃pρ̃D̃ and the heat release Q = Q̃Ỹ0/c̃pT̃0. Here µ̃, c̃p, Q̃, R̃ and λ̃ are
the dimensional dynamic viscosity, specific heat, heat of formation, the gas constant and the thermal
conductivity. For the purposes of the present study, they are taken to be constant. The reaction rate is

R = DρY exp(−θ/T ), (2)

where the Damköhler number D = D̃κ̃g/s̃
2
F and the activation energy θ = Ẽ/R̃T̃0. The thermal

diffusivity κ̃g = λ̃/ρ̃0c̃p, while D̃ and Ẽ are the dimensional pre-exponential factor and activation
energy.

Wall Thermal Flow: In the wall region, 1 < y < 1 + h, the temperature is determined from the heat
diffusion equation

Pe
∂Ts
∂t

= κ∇2Ts, (3)

assuming constant transport properties, where Ts is the wall temperature. Here κ = κ̃s/κ̃g is the ratio
of the dimensional wall to gas thermal diffusivity, where κ̃s = λ̃s/c̃psρ̃s, with λ̃s, c̃ps and ρ̃s the thermal
conductivity, the specific heat, and the density in the solid.
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Boundary conditions: On the outer surface of the wall, y = 1 + h, the Newton cooling law ∂Ts/∂y =
−Nu(Ts − 1)/λ is applied, where the Nusselt number Nu = k̃ã/λ̃g based on a heat transfer coefficient
k̃. Chemically inert and no-slip conditions are imposed on the inner wall, y = 1, where Ts = T,
λ∂Ts/∂y = ∂T/∂y, ∂Y/∂y = 0, u = 0, v = 0, with λ = λ̃s/λ̃g being the ratio of wall to gas thermal
conductivities. Channel symmetry flow conditions ∂T/∂y = 0, ∂Y/∂y = 0, ∂u/∂y = 0, v = 0, are
applied along the centerline (y = 0), thus restricting our solutions to symmetric ones.

3 Small Peclet number approximation

We assume variable density premixed flame propagation in the channel in the limit where the flame
thickness is greater than the channel height, or Pe→ 0. The analysis is an extension of the steady theory
developed in [8], here describing unsteady flow in the presence of a wall. When Pe → 0, the axial
coordinate, time and the pressure are scaled according to

ξ = Pex, τ = Pe t, p̄ = Pe2p (4)

where ξ, τ and p̄ are O(1). With the scales (4), we seek asymptotic solutions to (1) via,

T ∼ T0(ξ, τ) + Pe2T1(ξ, y, τ), Y ∼ Y0(ξ, τ) + Pe2Y1(ξ, y, τ), (5)

u ∼ u0(ξ, y, τ), p̄ ∼ p̄0(ξ, τ), ρ ∼ ρ0(ξ, τ), v ∼ Pe v0(ξ, y, τ), (6)

which requires the heat loss at the wall (y = 1) to correspond to ∂T/∂y = O(Pe2). The derived
leading-order axial momentum equation leads to a separable solution for the axial velocity u0 in channel
Poiseuille flow form,

u0(ξ, y, τ) = ũ0(ξ, τ)(1− y2). (7)

The leading-order mass equation can then be subsequently integrated between y = 0 and y = 1,
followed by an integration in ξ, to give the axial velocity component ũ0 in terms of the leading-order
temperature variation T0 as

ũ0 =
3T0

2

∫ ξ

−∞

1
T 2

0

∂T0

∂τ
dξ + T0uc. (8)

Compatible velocity boundary conditions are

u = uc(1− y2), ξ = −∞. (9)

With uc imposed, this corresponds to Poiseuille flow at the inlet to the channel. The downstream end
must be open. When the upstream end is closed, uc = 0. On the other hand, when the downstream end
of the channel (ξ →∞, is closed, the upstream end must be open, and ũ0 is modified from (8) to

ũ0 = −3T0

2

∫ ∞
ξ

1
T 2

0

∂T0

∂τ
dξ. (10)

Equations for the leading-order temperature and mass fraction variations T0 and Y0 can be obtained by
integrating the O(Pe2) energy and rate equations between y = 0 and y = 1 to give,

1
T0

∂T0

∂τ
+

2ũ0

3T0

∂T0

∂ξ
=
∂2T0

∂ξ2
+
∂T1

∂y
(ξ, 1, τ) +QR0, (11)

and
1
T0

∂Y0

∂τ
+

2ũ0

3T0

∂Y0

∂ξ
=

1
Le
∂2Y0

∂ξ2
−R0. (12)
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Thus (8) (or (10)), (11) and (12) are sufficient to determine ũ0, T0 and Y0 once ∂T1/∂y is determined
from the analysis of heat flow in the wall.

With spatial and temporal scales defined by (4), and redefining y such that ŷ = (y− 1)/h, the wall heat
equation becomes

h2Pe2∂Ts
∂τ

= κ

(
h2Pe2∂

2Ts
∂ξ2

+
∂2Ts
∂ŷ2

)
. (13)

The wall boundary conditions on ŷ = 0 (y = 1) and on ŷ = 1 (y = 1 + h) become λ∂Ts/∂ŷ =
hPe2(∂T1/∂y), ∂Ts/∂ŷ = −hNu(Ts − 1)/λ. For many wall materials, the ratio of thermal conductivi-
ties λ� 1, suggesting in such cases a rescaling of λ and Nu, where λ = λ̂/h, Nu = Pe2N̂u. Thus when
λ � 1, the thickness of the wall material is O(1/λ). A solution to (13) is now obtained in the form
Ts ∼ Ts0(ξ, τ) + h2Pe2Ts1(ξ, y, τ). At O(h2Pe2), equation (13) can be integrated between ŷ = 0 and
ŷ = 1 to give an evolution equation for Ts0:

∂Ts0
∂τ

= κ
∂2Ts0
∂ξ2

− κ

λ̂

(
N̂u(Ts0 − 1) +

∂T1

∂y

)
. (14)

The temperature condition on the inner wall becomes, Ts0(ξ, τ) = T0(ξ, τ), so that by eliminating
∂T1/∂y between the channel and wall temperature equations (11) and (14),(

1
T0

+
λ̂

κ

)
∂T0

∂τ
+

2ũ0

3T0

∂T0

∂ξ
= (1 + λ̂)

∂2T0

∂ξ2
+QR0 − N̂u(T0 − 1). (15)

Equation (15) for T0(ξ, τ) is solved with (12) for Y0 and (8) for ũ0. The boundary conditions on T0 and
Y0 are

T0 → 1, Y0 → 1, as ξ → −∞;
∂T0

∂ξ
→ 0,

∂Y0

∂ξ
→ 0, as ξ →∞. (16)

Note that for steady flow and λ̂ = 0 (corresponding to h → 0), (15) reduces to that obtained in [8]. A
similar analysis can be conducted for radially-symmetric, variable density flame propagation in a thin-
walled circular pipe, and a single system that determines ũ0, T0 and Y0 for either channel or pipe flow
can be written.

4 Steady and Unsteady Solutions

With U > 0 representing the axial speed of a steady flame propagating to the left in the channel, in a
frame of reference traveling with the flame, the steady equations are

ρ0

(
2
3
ũ0 + U

)
=
(

2
3
ũc + U

)
= M, M

∂Y0

∂ξ
=

1
Le
∂2Y0

∂ξ2
−R0, (17)

(
M

[
1 +

λ̂

κ

]
− 2

3
ũcλ̂

κ

)
∂T0

∂ξ
= (1 + λ̂)

∂2T0

∂ξ2
+QR0 − N̂u(T0 − 1). (18)

For finite thickness walls, with N̂u = 0, the product flame temperature becomes

Tb = 1 +Q

(
1 +

Uλ̂

Mκ

)−1

or Tb = 1 +Q

(
1 +

(1− 2ũc/3M)λ̂
κ

)−1

, (19)
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which depends on the direction and speed of propagation: for U > 0, Tb < Tad; for U = 0, Tb = Tad
and for U < 0, Tb > Tad. When the flame propagates away from a closed end toward an open end,
M = U/Tb, and the product flame temperature becomes

Tb =
1
2

1− κ

λ̂
+

√(
κ

λ̂
− 1
)2

+ 4(1 +Q)
κ

λ̂

 , (20)

which does not depend on the flame propagation velocity. Further insights into the steady flame structure
have been obtained via a large activation energy analysis. Writing N̂u = Ñu/θ, and omitting the details,
the main results are

Mα =
(1 + λ̂)T 2

b (Tad − 1)
(Tb − 1)T 2

ad

√
Le exp(−φf/2), φf =

2(Tb − 1)Ñu(1 + λ̂)
M2α2T 2

b

. (21)

where

α = 1 +
λ̂U

κM
= 1 +

λ̂

κ

(
1− 2ũc

3M

)
, Tb = 1 +

Q

α
, Tad = 1 +Q. (22)

Figure 2 shows some results for the large activation energy analysis, specifically the variation of flame
temperature Tb (left) and flame velocity U (right) with axial velocity amplitude ũc of a Poiseuille flow
imposed at the channel inlet forQ = 6, Le = 1, λ̂ = 1 and with an adiabatic outer wall. The temperature
Tb increases with increases in ũc, while the flame velocity decreases. For U > 0, the flame temperature
is below the adiabatic flame temperature Tad = 1+Q, while Tb is higher for larger thermal diffusivities.
For U < 0, Tb is greater than Tad, but higher for smaller κ. Figure 3 (left) shows the variation of mass
flux M with Nusselt number Ñu for Q = 6, Le = 1 and λ̂ = 1 for a range of ũc and diffusivity ratios κ.

We have also studied unsteady pulsating modes of flame propagation obtained from the full system (15),
(12) and (8). Figure 3 (right) shows the variation of the reaction rate for a pulsating unstable solution
obtained with D = 12.2786× 106, θ = 100, Le = 5, Q = 6, Ñu = 0, λ̂ = 0.1, κ = 1 and ũc = 0. In
summary, the inclusion of a finite thickness wall in a narrow channel has a non-trivial influence on the
dynamics of variable density thick flames. In the full paper, a complete characterization of the behavior
and influence of variation in the wall thermal parameters on thick flame dynamics will be given both for
steady and unsteady flows.
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Figure 2: Variation of flame temperature Tb (left) and flame velocity U (right) with axial velocity am-
plitude ũc of a Poiseuille flow imposed at the channel inlet for Q = 6, Le = 1, λ̂ = 1 and Ñu = 0.
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