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1 Abstract

This paper studies the stability of premixed flames in a narrow channel with a step-wise, prescribed wall
temperature by using the thermo-diffusive approximation. In this work, we focus on the influence of the
equivalence ratio φ, the mass flow rate m and the fuel Lewis number LeF on the stability of a premixed
flame propagating inside the channel. According to the numerical calculations, the flame presents a
range of equivalence ratios φ in which the flame becomes unstable, starting an oscillatory movement
that leads to a periodic variation of the maximum flame temperature and position of the flame. The
region of maximum instability is found to be near φ = 1, with an oscillation amplitude that reduces as
the Lewis number increases.

2 Introduction

In the present paper we consider the flow of a mixture of fuel and oxidizer through a narrow channel with
a step-wise wall, prescribed temperature. The use of the thermo-diffusive approximation decouples the
momentum and continuity equations from those of energy and mass fraction. Even thought the model
used in this work reduces the complexity to a minimum, a considerably large number of parameters
remain in the problem.

Previously, some authors have study similar problems. Among them, the most relevant are those by
Pizza et al. [1], Kurdyumov et al. [2] and Kurdyumov [3]. The article by Pizza et al. studied the stability
of a hydrogen flame in a channel with a prescribed step-wise wall by using a detailed chemistry. They
identified unstable flame propagation for different values of the channel height and of the Damköhler
number. Kurdyumov et al. confirmed the observations of [1] by using a thermo-diffusive model and
assuming a very poor mixture. They also compared his numerical results with a one-dimensional sta-
bility analysis that provided the map of stability of the problem. The effect of the Lewis number in an
adiabatic channel was considered later by the same author in [3]. Unlike previous examples, he carries
out a two-dimensional stability analysis by introducing a method that allows the calculation of the first
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Figure 1: Sketch of the computational domain with the main boundary conditions at two different times
t1 = 4.1 and t2 = 5.9 for a stoichiometric mixture φ = 1, with d = 5, m = 3.5, β = 10, γ = 0.87,
θw = 0.6, s = 4, LeO = 1, and LeF = 0.3. Upper part of the figures includes temperature isocontours
for 0.05 ≤ θ ≤ 0.65 at intervals δθ = 0.05 (upper plot) and for 0.1 ≤ θ ≤ 1.2 at intervals δθ = 0.1
(lower plot). Lower part of the figures represents the reaction rate isocontours for 1.2 ≤ ω ≤ 2.8 at
intervals δω = 0.4 (upper plot) and 20 ≤ ω ≤ 80 at intervals δω = 20 (lower plot). Calculations have
been performed.

eigenvalue in a relatively easy fashion.
None of the studies mentioned above have considered the effect that the variation of the equivalence
ratio φ could have on the stability of the flame. The present study covers that gap by numerically inte-
grating, in the thermo-diffusive approximation, the mass fraction and energy equations in a range that
covers from very lean to very rich mixtures.

3 Formulation of the problem

We consider a premixed combustible mixture of fuel and oxidizer flowing in a planar two-dimensional
channel of height h, as sketched in Fig. (1). The inlet temperature T0 at x′ = −∞ is fixed, while a
velocity profile with mean velocity U0 is imposed at the inlet section. The wall temperature is supposed
to vary in a step-wise fashion, being maintained at the inlet value T0 if x′ < 0 and jumping to a higher
value Tw if x′ ≥ 0 (see Fig. 1).

To simplify the problem, we adopt the thermo-diffusive approximation in which density ρ, kinematic
viscosity ν, fuel DF and oxidizer DO molecular diffusivity, heat capacity cp, and thermal diffusivity α
are defined as constants. The fluid dynamics is not affected by the combustion and the velocity profile
at the inlet remains unchanged along the channel.

The chemical reaction is modeled by an irreversible, single-step reaction of the form νFF + νOO →
P + Q, where F , O, P and Q denote the fuel, the oxidizer, the combustion products, and the heat
released in the chemical reaction. Hereafter, νF and νO are the stoichiometric coefficient of the fuel
and oxidizer, which have molecular weights WF and WO, respectively. The equivalence ratio of the
mixture is, therefore, defined as ϕ = sYF /YO where s = νOWO/(νFWF ) is the mass of oxidizer
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needed to burn the unit mass of fuel. To take into account the variation of the stoichiometric ratio, it is
useful to write the equations in terms of the excess and deficient species mass fraction, denoted by the
subscripts E and D respectively, instead of considering fuel and oxidizer mass fractions as unknowns.
The using of this nomenclature provides a system of equations that do not change as we study lean or
rich mixtures, introducing an alternative definition for the equivalence ratio φ = νYE/YD > 1, where
ν = νEWE/(νDWD). Notice that φ is always greater than or equal one and that φ = ϕ, ν = s and
φ = ϕ−1, ν = s−1 in rich and poor mixtures, respectively.

The consumption rate is assumed to follow an Arrhenius law Ω = ρ2AYFYO exp(−E/RgT ). In the
previous expression ρ is the density, A is the pre-exponential factor, YF and YO are the fuel and oxidizer
mass fractions, E is the activation energy, Rg is the universal gas constants, and T is the local tempera-
ture of the mixture, respectively. With all these assumptions, the system dynamics is described by three
convection-diffusion-reaction equations for the energy and for the fuel and oxidizer mass fractions.

This system of partial differential equations can be non-dimensionalized by scaling the variables with the
appropriate reference values. The mass fractions are scaled using their inlet values, while h and h2/α are
chosen as the reference length and time scale, defining x = x′/h, y = y′/h and t = t′/(h2/α). The non-
dimensional temperature is defined as θ = (T−T0)/(Ts−T0), with T0 representing the inlet temperature
and Ts the adiabatic temperature of a stoichiometric planar flame Ts = T0 + (Q/cp)s/(1 + s).

Introducing the non-dimensional variables defined above, the problem reduced to the integration of

∂tθ +m
√
dU∂xθ = ∆θ + dφF (φ)2ω (1)

∂tYE +m
√
dU∂xYE = (LeE)

−1∆YE − dF (φ)ω (2)

∂tYD +m
√
dU∂xYD = (LeD)

−1∆YD − dφF (φ)ω, (3)

where Lei = α/Di are the Lewis number of the excess and deficient species i = E,D, β = E(Ts −
T0)/RgT

2
s is the Zel’dovich number, m = U0/SL is the mass- flow parameter, d = h2/δ2T is the

Damköler number and SL and δT represent the planar burning velocity and the flame thickness for a
stoichiometric mixture φ = 1, respectively. The combustion rate is now written as

ω =
β3

4LeELeDu2p
exp

[
β(θ − 1)

1 + γ(θ − 1)

]
, (4)

where γ = (Ts − T0)/Ts = 0.87 represents the heat release parameter. In Eq. (1)-(3), ∆ = ∂2
xx + ∂2

yy

is the Laplacian operator, ∂ denotes partial derivative, U = 6y(1− y) is the Poiseuille velocity profile,
and the function F (φ) = (1 + s)/(φ+ s) depicts the effects of the dilution of the mixture.
Above equations are integrated by imposing boundary conditions upstream x → −∞ for both tempera-
ture and mass fractions

θ = YE − 1 = YD − 1 = 0, (5)

while the flow must reach an equilibrium state far downstream x → ∞

∂xθ = ∂xYE = ∂xYD = 0. (6)

The physical domain is truncated to a finite computational domain x ∈ [xminxmax], where xmin and
xmax must be carefully chosen in order to assure the fulfillment of boundary conditions. Typically
xmin = −3 and xmax = 10, but longer values are usually needed when very diffusive fuels and low
mass flow rates are considered.
The boundary conditions at the non-porous walls are given by

θ − θwΘ(x) = ∂yYE = ∂yYD = 0 at y = 0, 1 (7)
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where Θ(x) is the Heaviside step function.

The factor up = SL/UL introduced in Eq. (4) is the ratio of the planar stoichiometric flame speed for
finite activation energy and the flame propagation velocity of a stoichiometric mixture in the limit of
infinitely high activation energy [4], U2

L = 4ραLeELeDAνDWEs
2(s+1)−1β−3 exp(−E/RgTs). The

factor up is obtained numerically by integrating the one-dimensional eigenvalue problem

θ′ = θ′′ + ω (8)

Y ′
E = (LeE)

−1Y ′′
E − ω (9)

Y ′
D = (LeD)

−1Y ′′
D − ω, (10)

with boundary conditions

θ = YE − 1 = YD − 1 = 0 at ξ → −∞
θ − 1 = YE = YD = 0 at ξ → ∞,

where ξ = x′/(α/SL) is the non-dimensional distance in a reference frame moving with the flame,
the prime symbol denotes derivative along ξ, and ω is given by Eq. (4). Notice that with the scales
defined above, the factor up is only a function of the fuel and oxidizer Lewis numbers. The above one-
dimensional problem is solved by using a shooting method giving the values of up plotted in Fig. (2) for
LeO = 1.

LeF
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Figure 2: Variation of the factor up with the fuel Lewis number LeF

4 Results

4.1 Numerical treatment

The unsteady solution is obtained by integrating Eqs. (1)-(3) using a time-marching procedure, second-
order accurate in both time and space. The solution is started by setting a homogeneous temperature
field θ = θw for x > 0 and θ = 0 for x < 0 and YF = YO = 1 everywhere. Steady solutions are
obtained using a Successive Over-Relaxation (SOR) method.
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4.2 Effect of the equivalence ratio ϕ

We have considered in this brief communication the effect of the equivalence ratio ϕ on the stability of
the flame for two different Lewis numbers and fixed mass flow rates m = 3.5 and Damköhler number
d = 5. The results of the calculations are represented in both Fig. (1) and Fig. (3). In the latter we have
plotted the temporal evolution of the maximum temperature in the channel θm for LeF = 0.3 (left plots)
and LeF = 1 (right plot) as a function of the equivalence ratio ϕ. For a highly diffusive fuels LeF = 0.3,
the solution presents a Hopf bifurcation at ϕ ' 0.85 that puts the flame to oscillate, changing its location
inside the channel and varying significantly its temperature. Contrary, for LeF = 1 the bifurcation does
not emerge at any value of ϕ and the solutions achieves a steady state after the transient oscillations die
out.
In figure (1) we plot temperature and reaction rate isocontours at two different times t1 = 4.1 and t2 =
5.9 for a stoichiometric mixture ϕ = 1 with fuel Lewis number LeF = 1. The chosen times, t1 and t2,
correspond to the time instants at which the maximum temperature in the channel achieves a minimum
and a maximum respectively, as has been indicated with symbols (circles �) in the ϕ = 1 plot of the
left column of figure (3). Remarkably, the maximum reaction rate isosurface presents a discontinuity
at t = t2, with an aperture around y = 1/2 where w is ten times smaller that the reaction rate found
in lower velocity regions and through where air and fuel can leak to the post-flame neigborhood. This
hollow region dissapears as the flame is pushed further downstream by the incoming flow and the flame
returns to be a continuous surface (except in a small region close to the channel walls).

Acknowledgements: The authors gratefully acknowledge the financial support of the Subdireccion
General de Investigacion of Comunidad de Madrid under research contracts S2009/DPI-1572 (DA) and
CCG10-UPM/ESP-5617 (MSS, DA). .
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Figure 3: Temporal evolution of the maximum temperature in the channel θm for various equivalence
ratios φ (specified in the figures) and Le = 0.3 (left) and Le = 1.0 (right). The rest of parameters are
specified in the caption of figure (1). In the ϕ = φ = 1 figure of the left colum of plots, the symbols
(�) indicates the times t1 = 4.1 and t2 = 5.9 at which temperature and reaction rates isocontours are
represented in figure (1).
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