
23
rd

 ICDERS July 24-29, 2011 Irvine, USA 

Correspondence to: katarzyna.bizon@unisannio.it  1 

Empirical Reduction of Dynamical Reactor Models via 

Chaos Sampling: Comparison with Classic Reduction 

Methods.  

    Katarzyna Bizon, Joanna Smuła and Gaetano Continillo 

Università del Sannio, Department of Engineering 

Benevento, Italy  

1 Introduction 

Discretisation of science and engineering problems described by partial differential equations often 

yields discrete problems characterized by very high number of degrees of freedom, particularly in 

presence of nonlinearities in the governing equations – as most models of reactive systems contain. 

This may cause numerical solution to be very expensive – despite the continuously increasing 

computing power - both in terms of computational time and storage requirements. Hence, a strong 

need arises for model reduction techniques, yielding low-dimensional approximations of the full high- 

or infinite-dimensional systems while retaining their essential features. 

The most popular approach in model reduction is a class of methods based on subspace projection. 

Methods based on this concept truncate the solution of the original system in the appropriate basis. 

Particularly, a quite common tool for model reduction and numerical analysis of the dynamics of 

chemical reactors are collocation methods, in which the systems’ equations are approximated by 

polynomials with unknown coefficients, in chosen collocation points of the normalized domain [1]. 

Another classic approach for low order system determination is based on the Galerkin projection, 

which in its original form employs classic orthogonal functions as a basis. In some cases it can be 

much more efficient to use an empirically determined basis, containing a ‘knowledge’ about the 

systems’ behavior. Such basis can be obtained by means of proper orthogonal decomposition (POD) 

[2], using a properly sampled ensemble of systems solutions obtained from more detailed numerical 

simulations. The main limitation of the POD method, when applied to the dynamic model reduction, 

comes from its strictly empirical character: usually POD employs sampled data from one transient 

evolution of the system to an asymptotic regime, whereas the process can often have more than one 

final state or regime as well as drastic changes of the solution upon changes in  the system parameters. 

Hence, the first step of the procedure i.e., the collection of the representative set of simulation data, is 

considered to be crucial for generating a global basis. One possibility could be the determination of the 

POD basis from a single, but chaotic orbit, since such an orbit covers a portion of the phase space of 

higher dimension, it is expected to be characterized by a higher value of the information entropy, 

hence more information content about the system dynamics, if compared to lower dimensional 

periodic orbits.  

In an earlier work [3] the chaos sampling approach with POD/Galerkin is demonstrated with the 

application to a typical system – a simple one-dimensional transient model of tubular reactor with 
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external heat recycle for energy recovery, which generates complex oscillatory solution profiles. In the 

present work, optimal construction of the POD basis is sought by sampling of the chaos window 

characterized by the maximum orbit entropy, in order to build a reduced order model able to capture 

the global attractor of the system. The performance of POD-based Reduced Order Models (ROM) are 

compared with those obtained with ROMs built using two classical approaches, i.e. approximation of 

the tubular reactor by means of the continuously stirred tank reactor (CSTR) cascade, and collocation 

on finite elements. 

2 Mathematical model  

The present study applies to the model of a psuedohomogeneous autothermal reactor with axial 

dispersion of mass and heat and external cooling. The model is essentially the one proposed in Ref. [4], 

where a comprehensive analysis of the dynamics of the system is presented, demonstrating the 

occurrence of complex oscillatory regimes – including periodic, multiperiodic and chaotic oscillations. 

Specifically, the authors studied the influence on the reactor dynamics of parameters such as the 

cooling medium temperature, the Lewis number, i.e. the measure of the pseudohomogeinity of the 

process, and the Peclet number characterizing mass and heat dispersion. The analysis of the effect of 

the Damköhler number on the dynamics of the adiabatic variant of the model can be found in Ref. [5]. 

 

Figure 1. Schematic of the autothermal pseudohomogeneous reactor. 

The dimensionless mass and energy balances of the system are: 
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where α is conversion degree and θ is dimensionless temperature. The corresponding initial and 

boundary conditions are given, respectively, by: 
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where f  represents the efficiency of the effluent-feed heat exchange. 

In the present work, the effect of the variation of temperature of the cooling medium θH onto the 

system dynamics is considered. The other parameters are kept constant as follows: 

Da 0.15, 1.4, 2, 0.3, Pe Pe 300, Le 1, 1M Tf nβ δ= = = = = = = =  
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3 Reduction methods 

Similarly as done in a previous work [6] where the mathematical model of a pseudohomogenous 

tubular reactor with mass recycle was analyzed by means of POD-based ROM, the PDE model is first 

reduced to a system of ODE by means of classical approximation using a cascade of N continuously 

stirred tank reactors (CSTRs) [7]. In practice, the reactor tube is divided into N pieces, which are 

treated as identical CSTRs, where thermal and concentration conditions in the (i)
th
 tank are taken as 

inlet conditions into the (i+1)
th
 tank. The number of tanks in the CSTR cascade was set to 1/2 Pe, 

where Pe is the Peclet number. 

For further model reduction, a POD/Galerkin method with chaotic sampling, and orthogonal 

collocation on finite elements [1], were used. The POD technique delivers a optimal, in L
2
 sense, set of 

empirical orthogonal functions basing on the spatiotemporal set of data obtained from the experiment 

or the full order model numerical solution [2], u(x,t), where t denotes time and x denotes position in 

space. The sampled data can be represented in the matrix form as: 
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where N is the number of discretization points in spatial domain and M is the number of samples taken 

in time. The POD basis Φ={φ1,φ2,…,φN} is then determined by solving the eigenvalue problem 

CΦ=λΦ, where C is the time-averaged autocorrelation matrix, i.e. C=U,U
T
, with an angular brackets 

denoting time-averaging operation. Using the determined POD functions, the truncated solution ũ(x,t) 

can be expressed as the linear combination of modes and time dependent coefficients as: 
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where K<<N is the truncation order, i.e. the number of modes employed, whereas an(t) are modal 

coefficients to be determined by means of classical Galerkin method [8]. 

In the orthogonal collocation method on finite elements, the spatial domain is divided into m equally 

sized elements and within each element i we approximate the solution ui by a weighted n
th
 order 

polynomial [1]: 
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where lij(x) are Lagrange polynomials of order n defined on element i, and the weight uij is the state at 

the j
th
 discretization point within the element i. The collocation points xij are chosen as zeros of 

Legendre polynomials. 

4 Results and discussion 

In order to characterize the influence of the external cooling on the dynamics, brute force simulations 

were conducted in the range of θH∈[-0.07,-0.02], using CSTR-based model employing N=150 tanks, 

hence resulting in a total of 300 ODE. Figure 2 presents a solution diagram, with bifurcation parameter 

θH, obtained by plotting on the ordinates the extremes of the dimensionless temperature at the outlet of 

the reactor θex(1). It can be seen that, for the θH<−0.0605, the trajectories appears to have chaotic 

nature, and become periodic with increasing temperature of the cooling medium.  

The idea is to generate samples for POD basis construction from the chaotic solution. In fact, the 

amount of ‘information’ included in the chaotic orbit is maximum; Figure 2 combines the solution 

diagram with the corresponding values – being a non-smooth function of the bifurcation parameter   – 

of the orbit entropy, classically defined in the context of information theory as: 
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where pi is the probability that the maximum value of the orbit falls into the i
th

 interval, and N is the 

number of intervals. If pi=0 then the value of the product pilog
2
pi is assumed to be 0. 

 

Figure 2. Effect of the cooling temperature θH on the outlet temperature with the corresponding information 

entropy S of the orbit.  

It can be seen (Fig. 2) that the entropy of the orbit increases gradually with increasing value of the 

orbits’ periodicity, reaching highest values for values of θH for which a chaotic character of the 

solution was observed. Moreover, it should be noted that, while values of entropy of periodic orbits 

are not influenced by the chosen value of  N, the entropy of chaotic orbits tends to infinity with N→ ∞ . 

Hence, with the purpose of determining a POD basis able to capture the global dynamics of the 

system, the solution trajectories were sampled at θH=–0.065. Figure 3 shows a comparison of the 

chaotic attractors (for θH=–0.065) obtained by means of the ‘full order model’ (FOM, i.e. model base 

on CSTR cascade approximation, employing 300 ODE) and ROM built by the projection of the mass 

and energy balances onto 25 POD modes (resulting in total number of 50 ODE) – for each state 

variable - obtained from the chaotic orbit (POD-A/15). It can be seen that POD based model 

accurately approximate chaotic behaviour of the system. 

 

Figure 3. Comparison of chaotic attractors for θH=–0.065: FOM vs POD-A/25 i.e., ROM obtained employing 

25 POD basis functions determined from the chaotic orbit. 
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Further simulations employing ROMs reveals that the chaos-delivered basis (POD-A) performs very 

good even for lower values of θH, where the solution trajectories are characterized by smaller 

complexity. As it can be observed in Figure 4, POD model approximates accurately the system 

behaviour both in the transient (Fig. 4a) and at steady state (Fig. 4b). On the other hand, when ROM 

based on the collocation method (employing 8 collocation points on each of the 3 finite elements) was 

used, significant divergence of the solution in the early transient was observed. 

 

Figure 4. Comparison of  the time series in early transient for θH=–0.04: FOM vs POD-A/25 (POD basis 

determined at  θH=–0.065) and orthogonal collocation on 3 elements with 8 nodes (a); corresponding limit 

cycles (b).  

To verify quantitatively this rough visual finding, the distance between attractors was evaluated by 

means of the Hausdorff distance between sets defined as follows: 
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The error of the approximation evaluated in terms of the Hausdorff distance is marked on Figure 5: for 

the solution obtained at θH=–0.04 using chaotic basis (POD-A) and collocation based model (COL-8-

3) and two additional POD-based ROMs: POD-B determined from multiperiodic oscillations at θH=–

0.055 and POD-C determined at θH=–0.04 where period-one oscillations occurs.  

 

Figure 5. Hausdorff distance for θH=–0.04 between the attractor obtained by FOM and attractors obtained by 

means of three sets of POD bases, and orthogonal collocation on 3 elements with 8 nodes. 2K denotes the total 

number of equations of the POD-based ROMs. 
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Table I reports the values of the Hausdorff distance computed for solutions obtained for two values of 

cooling temperature, namely θH=–0.04 and θH=–0.065 using all determined POD basis. In all cases, 

25 modes were used for the approximation of each state variable in the ROM. As it is seen from Table 

1, the error of the solution for  θH=–0.04 obtained with POD-A/25 is more than 3 times smaller than 

the error obtained when the basis was constructed from the samples collected exactly at this value of 

the parameter. Obviously, for the chaotic trajectory the difference of the error produced by different 

POD models is much larger. 

Table I: Hausdorff distance between the attractor of FOM solution and attractors obtained by means of four sets 

of POD bases. In bold the best solution. 

POD basis Entropy 
dH 

θH=–0.04(periodic) 

dH 

θH=–0.065 (chaotic) 

A/25 (chaotic) 4.78 0.001250 0.001811 

B/25 (multiperiodic) 3.42 0.001556 0.004442 

C/25 (periodic) 1 0.003935 0.011653 

D/25 (fixed point) 0 0.147300 0.151094 

 5 Conclusions 

A POD/Galerkin technique was successfully applied to the optimal reduction of the model of an 

autothermal tubular reactor with recycle. The empirical basis was constructed with data sampled in the 

highest entropy (chaotic) regime. As expected, the higher the entropy of the sampled orbits, the closer 

the approximation to the original model. POD/Galerkin is shown to perform better than the classic, 

efficient approach of orthogonal collocation on finite elements, especially in the early transient. 
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