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1 Introduction

Propagating diffusion fronts in reactive, heterogeneous media consisting of two spatially separated
phases are common in many fields such as chemical kinetics, combustion, biology, etc. [1]. The re-
action in such systems is localized within or at the phase boundaries and thus the source term in the
governing reaction-diffusion equation is not a continuous spatial function, i.e., it is discrete. Often, the
approach used for obtaining traveling wave solutions in such discrete systems is to average (homoge-
nize) the source term with a spatially continuous function [2]. However, a homogeneous representation
of the sources is justified only if the two characteristic scales of the propagating diffusion wave, the
width of the reaction zone lR = vtR and the width of the diffusion zone lD = D/v, are much larger
than the scale of the system heterogeneity l (here v is the front velocity, tR is the characteristic time of
reaction, and D is the active component diffusivity) [3, 4]. Because length scales are functions of the
propagation speed, they cannot be estimated a priori from a solution that uses a yet unjustified source
homogenization procedure [5].

To investigate the validity of the homogenization approach to model the diffusion front in a system with
discrete sources, we will obtain in the present work an exact solution for the front speed without spatial
averaging of sources and will compare it to a known solution derived from a mean-field theory approach.
We will show that in a system with regularly distributed sources, discreteness leads to the appearance of
a specific front propagation limit with non-zero front speed even if the diffusing component produced
by the sources is conserved (i.e., no losses are present). Finally, we will show experimentally that
the continuous and discrete propagation regimes using the same reactive system can be achieved by
changing the diffusivity of the active component.

In our analysis, we will consider the simplest possible discrete system where the sources of the diffusing
component are points embedded in an inert continuum. We will also assume the source term to be a
stepwise function in time: the source turns on when the diffusing component reaches some prescribed
value Ti and then releases the active component with constant rate for a prescribed period of time tR.
In spite of its simplicity, such a discrete source model has a physical analog: a flame in suspensions of
a non-volatile solid fuel in a gaseous oxidizer [3], in which case the active component released by the
sources is heat. Indeed, due to the density difference between the solid fuel and gas of more than three
orders of magnitude, the distance between fuel particles in a combustible suspension is much larger than

Correspondence to: samuel.goroshin@mcgill.ca 1



Goroshin, S. Discrete Flame Fronts

their diameter such that the particles can be approximated as point sources. The ignition temperature
Ti of particles is, in the first approximation, independent of flame speed [2]. Furthermore, the particle
reaction time tR after ignition is controlled by the O2 diffusion towards the particle surface [6], and
as a first approximation, the diffusivity is independent of the temperature. Using terminology common
to combustion, the three dimensionless parameters characterizing the problem can be identified as the
ignition temperature θi = cpρTi/(QB) (Q is the heat release per unit mass of fuel, B is the fuel mass
per unit volume of mixture, cp is the specific heat of the mixture, and ρ is the density of the media),
the flame speed η = vl/D (v is flame speed, l is the distance between particles and D is the thermal
diffusivity of the media), and the combustion time τc = tRD/l2.

2 Modeling

2.1 Analytical Model for Regular Systems

To begin, we will show a solution of the above formulated problem that approximates the heat sources
by a spatially continuous function. The expression defining flame speed in homogeneous media with
a stepwise reaction rate is well known [3] and can be written using dimensionless parameters defined
above as follows:

θi =
1− e−η2τc

η2τc
. (1)

Equation (1) contains only one combination of dimensionless parameters η2τc that does not depend on
l, the distance between particles, because the heat source term has been spatially homogenized. The
dependence of η on τc is plotted in Fig. 1 as solid lines. The flame speed decreases as θi increases and
tends to zero in the limit of θi = 1. In other words, if the heat released by the reaction is able to increase
the temperature of the media to its ignition point Ti, a reactive wave will propagate. In the limit where
the reaction temperature just reaches ignition, the flame speed approaches zero. Hereafter, this condition
(i.e., adiabatic flame temperature TA = QB/(cpρ) equals ignition temperature Ti) will be referred to as
the thermodynamic limit.

To obtain an analytical expression for the flame speed in the same system without invoking source
averaging, we initially assume that the distribution of particles forms a three-dimensional, regular lattice.
We also assume that the flame propagates in the x-direction from left to right and all particles in the
z − y plane ignite simultaneously, i.e., the flame front is flat. Due to linearity of the heat diffusion
equation, the temperature of a plane of particles just about to be ignited (x = 0) can be found by linear
superimposition of the contributions from all reacted and still reacting particles on the left side of the
domain:

Ti = To +
∞∑
i=1

∞∑
j=−∞

∞∑
k=−∞

∆Tijk (2)

When the reaction time is small in comparison to the characteristic time of the heat transfer between
particles, i.e., τc = tRD/l2 << 1, all particles on the left side of the igniting plane are already reacted
at the moment of ignition. In this case, reacted particles (sources) can be approximated by δ-functions
not only in space but also in time (τc → 0) and ∆Tijk is simply the Green’s function for an individual
particle:
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Figure 1: Dependence of the flame speed η on the combustion time τc in a system with regularly-spaced
point-like heat sources for θi = 0.3, 0.568 and 0.8. The solid line represents the homogeneous approach
from Eq. (1), the long dash line represents the physical solution to Eq. (5) and the short dotted line is the
unphysical solution to Eq. (5). The inset shows the dependence of the critical combustion time τ cc on the
ignition temperature θi. The hatched region indicates where flame propagation is no longer possible.

∆Tijk =
Q

cpρ

1

(4πDi∆τ)3/2
exp

((
i2 + j2 + k2

)
l2

4Di∆τ

)
(3)

Here we assume that consecutive planes of particles are ignited at regular time intervals ∆τ so the time
elapsed from the ignition of the i-th row can be written as i∆τ . By combining Eqs. (2) and (3), the flame
speed in the suspension of instantly reacting particles can be written using dimensionless parameters as:

θi =
1

(4π)3/2

∞∑
i=1

∞∑
j=−∞

∞∑
k=−∞

(η
i

)3/2
exp

((
i2 + j2 + k2

)
η

4i

)
(4)

For an arbitrary combustion time τc ≥ 0, Eq. (4) can be written in the general form using the integral
over time of the Green’s functions:

θi =
1

(4πτc)3/2

∞∑
i=1

∞∑
j=−∞

∞∑
k=−∞∫ i

η(
i
η
−τc

)
Θ
(

i
η
−τc

) τ−3/2 exp

(
− i2 + j2 + k2

4τ

)
dτ (5)

where Θ is the Heaviside function accounting for particles that are still burning at the moment of igni-
tion. Unlike in the homogeneous approximation given by Eq. (1), the flame speed defined by Eqs. (4)
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and (5) explicitly depends on the structure of the media, i.e., on the inter-particle spacing l. For the lim-
iting case of instantly reacting particles (τc = 0) given by Eq. (4), it is inversely proportional to l but the
dependence diminishes with increasing dimensionless reaction time τc. Therefore τc is the measure of
the system’s departure from the homogeneous case: the system demonstrates discrete properties when
τc << 1 and becomes homogeneous when τc >> 1. The identification of the discreteness parameter
τc now provides a quantitative tool that determines when spatial averaging is a valid procedure. Just
as spatial averaging may not be justified in certain systems, the existence of heterogeneity in the media
through which the reactive wave propagates is not sufficient grounds to reject the use of spatial averag-
ing. Only by examining the discreteness parameter τc can the appropriateness of spatial averaging be
evaluated.
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Figure 2: Time-temperature histories of a particle igniting under (a) physically invalid (τc = 0.1), (b)
critical (τc = 2.57), and (c) physically valid (τc = 5) conditions. The ignition temperature is θi = 0.8
in all cases. The thin gray line originating at τ = 0 corresponds to the particle temperature if ignition is
omitted.

The flame speed η expressed by Eq. (5) is in good agreement with Eq. (1) when τc >> 1, but, while
Eq. (1) predicts that η tends to infinity as τc approaches zero, the solution obtained by Eq. (5) is in-
sensitive to τc and asymptotes towards a finite value given by Eq. (4). When θi exceeds ∼ 0.568, the
solution to Eqs. (4) and (5) becomes unphysical when the combustion time τc is below some critical
value τ cc . Detailed analytical examination of the temperature history of the particles reveals that the
particle ignites at τ = 0 as the temperature decreases, ignoring the earlier ignition event at τi,2 in the
increasing branch of the same temperature curve, as shown in Fig. 2(a). If the particles are allowed to
react upon first reaching their ignition temperature, the sequencing of regular ignition events required
by this analytic solution is disrupted. If the requirement of a constant delay time between the ignition of
particle planes is relaxed, numerical simulations of the resulting propagation dynamics shows that the
front promptly quenches. As further evidence of unphysical characteristics, the flame speed η increases
with τc when τc < τ cc as shown in Fig. (1). The onset of unphysical propagation at τ cc is indicative of
propagation limit and is encountered at a finite speed, in contrast to the thermodynamic limit associated
with Eq. (1), which states that the flame speed η goes to 0 when θi tends to 1, irrespectively of τc. The
critical combustion time τ cc , separating physical (Fig. 2(c)) and unphysical ignition conditions (Fig. 2(a))
is a function of θi. For θi ≈ 0.568, the critical combustion time is θcc = 0 and the corresponding flame
speed is η = 1.2. The critical combustion time τ cc tends to infinity and the critical flame speed ηc ap-
proaches zero asymptotically as θi tends to unity as shown in the inset of Fig. 1. Near the propagation
limit, the flame is unstable and transient numerical simulation of the flame fronts near the critical limit
reveals behavior that is typical for bifurcating solutions prior to extinction: period doubling of ignition
delay times followed by onset of the chaotic behavior [4,7]. The system also demonstrates increasingly
complex behavior near the propagation limit when θi > 0.9 where physical and unphysical propagation
regions often alternate (see inset in Fig. 1) [7]. Equations (4) and (5) can be applied to a 1-D system of
equally spaced planar sources and 2-D arrays of line sources if we note that the summations in the j and
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k components can be approximated by integrations over planar and line sources, respectively. Thus, the
propagation limit found here applies equally regardless of the dimensions of the system.

We emphasize that the failure of the wave at τ cc occurs in the absence of heat losses to the system.
Even when the quantity released by the sources is conserved (i.e., heat in the case of combustion),
the propagation limit is encountered at values of ignition temperature below the thermodynamic limit
and at non-zero flame speed, which is in contrast to models that homogenize the sources and predict
the thermodynamic limit discussed above. We attribute this phenomenon to the discrete nature of the
sources resulting in heat diffusing outward from each source in all directions (including opposite to the
direction of propagation), whereas in a homogenized model, heat only diffuses toward unreacted media.
Propagation beyond this limit (which was found here for regular arrays) is only possible via random
distribution in the positions of the sources. This possibility (i.e., the wave exploiting local concentration
fluctuations to continue propagation) means that propagation limits in random media can only be defined
probabilistically.

2.2 Numerical Simulations with Random Systems

To explore the effect of randomizing the spatial positioning of the sources (in contrast to the analytic
solution with the regular lattice presented previously), simulations in systems with randomly distributed
point sources were investigated by the method of superimposing the Green’s function of individual
sources. Computer simulations were performed in 2-D square and 3-D cubic domains containing 8100
and 15 625 point sources, respectively. While numerical simulations were required to examine a statisti-
cally significant number of randomly generated systems with a large number of particles, the method of
solution remained based on the analytic solution for point sources (i.e., superposition of Green’s func-
tions) and no finite difference or other numerical approximations were introduced. Periodic boundary
conditions were simulated on the side boundaries of the domain by strategically placing images of re-
acting sources outside the domain while the front and back boundaries remained free. The initiation of
the propagating front was performed by a forced ignition of a layer of sources of variable width. Snap-
shots of the resulting propagating fronts are shown in Figs. 3(a) and 3(b) for the discrete and continuous
regimes, respectively. Significant roughening of the front can be observed for the discrete regime of
propagation.

(a) (b)

(c) (d)

Figure 3: Two-dimensional numerical simulations and photographs of the flame front in iron suspension
in Xe-O2 [(a) and (c)] and He-O2 [(b) and (d)] mixtures. The upward arrows indicate the propagation
direction. The simulations were performed for θi = 0.206 and using τc = 0.4 and 3.2 in (a) and (b),
respectively.
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Figure 4: Ratio of flame speeds between two different O2 concentrations in He and Xe mixtures. The
insert shows experimental measurements of the flame speed in iron suspensions in 21% and 40% O2 in
He and Xe.

3 Experiment and Discussion

Both continuous and discrete propagation regimes were realized experimentally in suspensions of iron
dust particles in a gaseous oxidizer. At moderate O2 concentrations, iron particles in suspensions re-
act completely heterogeneously without any gaseous products [8] matching the model assumption of
point-like heat sources. By replacing N2 in air first by He and then by Xe, the thermal diffusivity can
be drastically altered, changing the value of the dimensionless combustion parameter τc by almost an
order of magnitude from 3.2 (predominantly continuous flame propagation regime, τc > 1) to 0.4 (pre-
dominantly discrete propagation regime, τc < 1) without changing the reaction chemistry or adiabatic
flame temperature. These values of τc were used in the simulations shown in Figs. 3(a) and 3(b).The
experiments were performed in reduced gravity created inside an aircraft flying a parabolic trajectory
at gravity levels below 0.05 g. Reduced gravity eliminated particle settling and natural convection, al-
lowing observation of low speed flames (v ≈ 5 cm/s) characteristic for 25 µm iron particles in Xe-O2

mixtures. The local, particle-to-particle nature of the discrete regime for iron suspensions in Xe-O2

was manifested by the “rough” front structure, whereas the flame front in He-O2 mixtures was smooth,
characteristic of continuous flames (see Fig. 3). A similar difference in front appearance for He and Xe
mixtures was demonstrated by the numerical model as shown in Fig. 3.

Beside the flame appearance, the insensitivity of the flame speed to particle combustion time corrobo-
rates the discrete propagation regime in Xe-O2 mixtures as shown in Fig. 4. Flames in Xe mixtures are
less sensitive to changes on the O2 concentration CO2 , or the particle combustion time (tR ∼ 1

CO2
), sug-

gesting that the propagation mechanism is limited by particle-to-particle heat diffusion, characteristic
of discrete flames, whereas flames in He mixtures varied with the O2 concentration in better agreement
with the continuum theory (v ∼ 1√

tR
).
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vided by WestGrid and Compute/Calcul Canada.
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