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1 Introduction

For several decades many works have been devoted to the modeling of premixed turbulent combus-
tion, leading to different analyses whose main objective is the evaluation of the mean chemical rate ωc
appearing as a source term in the average transport equation for the progress variable c:

∂ρc̃

∂t
+∇ · ρũc̃ =∇ ·

(
Fc − ρu′′c′′

)
+ ωc, (1)

where ρ, u and Fc are respectively the density, the flow velocity and the diffusion flux of c. The Favre
decomposition is used here because of the strong density variations that exist in this kind of reactive
flows.

However, fewer works devoted to turbulent combustion modeling have focused on the closure of turbu-
lent transport terms appearing in equation (1), i.e. ρu′′c′′ as well as those appearing in the following
mean momentum equation, i.e. ρu′′u′′:

∂ρũ

∂t
+∇ · ρũũ =∇ ·

(
Tu − ρu′′u′′

)
−∇p, (2)

where Tu and p denote respectively the viscous stress tensor and the pressure. Nevertheless, thermal
expansion and related density changes have a strong effect on these turbulent transport terms, as shown
in the pionnering work of Bray et al. [1]. Still today, in many models of turbulent combustion, turbulent
transports in reactive flows are considered identical or at least similar to those observed in non reactive
flows. Doing so, classical turbulent models like k-ε or Rij-ε are used in association with gradient laws
to model the scalar turbulent transports. Here we call k the turbulent kinetic energy, Rij the Reynolds
stresses (i, j ∈ [1, 3]) and ε the dissipation of k. The same conclusion applies to Large Eddy Simulation
where subgrid scale transport relies in most modeling strategies on the turbulent viscosity and turbulent
diffusivity concept, an assumption that does not take into account the influence of unresolved thermal
expansion phenomena [2]. However, it is now well established that turbulent transports in reactive flows
can be non gradient or counter-gradient and that combustion generates turbulence, see for example [3].
Accordingly, the usual transport equations based on representations of turbulent transports similar to
those used for non reactive flows, are no longer valid and must be adapted to take thermal expansion
into account.
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In the present study a description of the velocity field as made of two contributions is conjectured [4, 5]
and is used as a theoretical basis to investigate the interaction effects between turbulence and premixed
flames. This analysis is then used to propose detailed and general closure expressions of the terms
representing turbulent transport, i.e., scalar flux ρu′′c′′ and Reynolds stresses components ρu′′u′′. The
corresponding set of algebraic closures, easier to handle than second order equations, has been suc-
cessfully validated thanks to DNS data [4, 5] and provides an interesting alternative to incorporate the
counter-gradient turbulent diffusion and flame generated turbulence phenomena in numerical simula-
tions of practical configurations. These closures are validated through their applications to two different
premixed flame geometries, i.e. (i) a flame stabilized in a turbulent stagnating flow and (ii) a turbu-
lent flame stabilized by the sudden expansion of a 2D channel [6]. Numerical results are satisfactorily
compared with the corresponding experimental data.

2 Splitting of the velocity field

We consider here the flamelet regime of turbulent combustion, see for instance [7, 8], where a turbulent
flame, whose propagating velocity and thickness are denoted respectively ST and δT , is thought as
a collection of local reactive interfaces that retain their identifiable laminar flame structure, i.e., the
laminar propagating velocity SL and the laminar flame thickness δL [7]. Moreover, using the progress
variable c, and considering a low Mach number description of the flow, leads to the well known equation
of state ρr = ρ( 1 + τc ), where τ = ρr/ρp − 1 is the expansion factor, ρr and ρp denote the density
of fresh reactants and combustion products respectively. Then, according to the continuity equation,
the total increase of velocity associated with thermal expansion through this turbulent flame is τST and
results from (i) the heat release that takes place through the local laminar flame, namely τSL, which is
called here the direct thermal expansion effect, and from (ii) the turbulent motion that increases the flame
surface and can be associated with an indirect thermal expansion effect [5]. Accordingly, we consider
that these two contributions of the thermal expansion can be treated separately in the velocity field so
that the total velocity vector u is split as follows [4, 5]:

u = v +w, (3)

where w is the velocity field resulting from the acceleration induced by a local flame front (direct effect)
and v represents the turbulent motion and its consequences on the flame surface (indirect effect). In
Eq.(3) the contribution w is subjected to the constraint that its norm corresponds to the acceleration
that takes place through a local laminar flame. Thus, we have ‖ w ‖= τSLc. By introducing now the
unit vector m that characterizes the orientation of the acceleration field induced by thermal expansion
through the local laminar flames, we obtain the following definition for w:

w = m ‖ w ‖= mτSLc. (4)

The norm ‖ w ‖ grows only through a local flame and is constant elsewhere whereas the unit vector m
is affected by both the flame surface orientation and turbulent motion.

Superimposing the two velocity fields as proposed by Eq.(3) leads to the following form of the momen-
tum equation:

∂ρv

∂t
+∇ · (ρuv) + ∂ρw

∂t
+∇ · (ρuw) =∇ · Tv +∇ · Tw −∇p. (5)

In this equation Ta is defined as: Ta = ρν
(
∇a+ (∇a)T

)
− 2

3ρνI ∇ · a, where I is the identity
tensor. A set of two similar transport equations can now be introduced for each velocity contribution v
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and w:

∂ρv

∂t
+∇ · (ρuv) = ∇ · Tv −∇pv, (6)

∂ρw

∂t
+∇ · (ρuw) = ∇ · Tw −∇pw, (7)

where ∇pv and ∇pw are the pressure gradient contributions introduced to characterize the velocity
fields v and w. Consistency with the momentum equation (5) yields the following relationship between
the two pressure gradients: ∇p = ∇pv +∇pw. Within the present framework the contribution ∇pv
is thought as the part of the pressure gradient induced by the turbulent motion and its indirect thermal
expansion effect on the flame surface, though the contribution ∇pw is associated with the local heat
release and corresponds to the local flamelet crossing effect or direct effect [4, 5].

Averaging or filtering processes can now be applied to the new momentum equation (6) and are eventu-
ally used to write a transport equation for the turbulent kinetic energy, ρkv = 1

2ρv
′′ · v′′:

∂

∂t

(
ρkv

)
+∇ ·

(
ũρkv

)
= 1

2

(
Dv + Pv − ρεv +Hv

)
, (8)

where Dv, Pv, ρεv, and Hv are diffusion, production, dissipation and pressure terms. More details
concerning these terms can be found in [4, 5].

The interesting point in this new transport equation is that pressure terms as well as dissipation terms do
not explicitely depend on the local heat release (direct effect) but depend only on the turbulent motion
and its indirect thermal expansion effect. Put in other words the turbulent phenomena described by
these terms (related to the v-velocity) are similar to those observed in non-reactive flows. Then, the
use of classical closures, developed for non-reactive flows, to model in reactive flows the corresponding
pressure and dissipation terms is indeed more relevant to describe the v-velocity field, as provided by
Eq.(8), than the u-velocity field. Consequently, these closures lead to the introduction of a new turbulent
viscosity νT = cµρk

2
v /ρεv that is independent of the thermal expansion through the local flame (direct

effect) and is much closer to the turbulent viscosity concept originally proposed for non-reactive and
incompressible flows.

3 Algebraic closures for turbulent reactive flows

Relation (3) leads also to the following expression for the scalar turbulent fluxes [4]:

ρu′′c′′ = ρv′′c′′ + ρw′′c′′, (9)

where the terms of the right hand side are respectively contributions related to (i) turbulence and (ii)
thermal expansion through local flames (direct effect). The first contribution must take into account the
turbulent mixing and the indirect thermal expansion effect that may lead to counter gradient diffusion [5].
Nevertheless, for the sake of simplicity, we choose here to close the first contribution, i.e. related to
turbulence, by using a classical gradient law: ρv′′c′′ = −ρ(νT /σT )∇c̃, where σT is a turbulent Schmidt
number and νT the turbulent viscosity introduced in previous section. The main difference between the
present closure and the classical one that relates ρu′′c′′ to a turbulent viscosity approximation, is that
the turbulent viscosity in the proposed gradient law describes the v velocity field induced by turbulence
instead of the total u velocity field that includes local or direct thermal expansion effect.

The second contribution of Eq.(9) is obtained by using Eq.(4) and by neglecting the cross correlations
between c and m:

ρw′′c′′ = τSLm̃ρc′′2. (10)
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Equation (3) also leads to the following expression for the turbulent kinetic energy:

ρk = ρkv + ρkw + 2ρkvw, (11)

where we can identify contributions related to (i) turbulence (ρkv), (ii) local heat release (ρkw =
1
2ρw

′′ ·w′′), and (iii) heat release-turbulence interactions (ρkvw = 1
2ρv

′′ ·w′′). As a first approxi-
mation, we choose to neglect the cross correlations ρkvw. The contribution due to thermal expansion
through local flames ρkw is obtained by using Eq.(4) and by neglecting the cross correlations between
c and m:

ρkw = 1
2(τSL)

2
[
ρc′′2 + ρc̃2(1− m̃ · m̃)

]
. (12)

The only remaining unknown quantity in the above description is the mean unit vector m̃ which is
aproximated by the following expression: m̃ = λmc̃, where λ =‖ m̃ ‖ is a scalar parameter that
characterizes the fluctuations of orientation. In absence of fluctuations λ = 1 and if m fluctuates
isotropicaly in all space directions λ vanishes (‖ m̃ ‖= 0). For the sake of conciseness, the algebraic
closure for λ is not detailed here and can be found in [5]. The unit vector mc̃ which gives the orientation
of the mean scalar flux can be estimated from∇c̃/‖∇c̃‖.

Eventually, the strategy proposed here consists in solving the mean scalar and mean momentum equa-
tions, Eqs.(1-2), associated with a classical non reactive k-ε model but related to the v-velocity field
instead of the u-velocity field. Then, the only additional transport equations used are those for ρkv and
ρεv. Classical non reactive models are used to close these additional transport equations.

The scalar turbulent fluxes in Eq.(1) are closed according to relations (9-10), which leads to:

ρu′′c′′ = −ρνT
σT
∇c̃+ τSLλρc′′

2mc̃. (13)

The Reynolds stresses in Eq.(2) are closed in a usual way as:

ρu′′u′′ = −ρνT
(
∇ũ+ (∇ũ)T

)
+ 2

3I
(
ρνT ∇ · ũ+ ρk

)
, (14)
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Figure 1: Mean flow structure in the ORACLES test rig (top) and mean chemical term ωc/ρ obtained
by numerical simulation (bottom)
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Figure 2: Profiles of mean velocity (top left), turbulent kinetic energy (top right), and scalar turbulent
flux (bottom left) versus the tranverse direction in the combustion chamber at x/hstep=8.36. Profile of
scalar turbulent flux is also presented versus the mean progress variable (bottom right).

where the turbulent kinetic energy ρk is obtained from Eqs.(11-12) by using the following algebraic
closure:

ρk = ρkv + 1
2(τSL)

2
[
ρc′′2 + ρc̃2(1− λ2)

]
. (15)

Finally, we chose to express the mean chemical rate in Eq.(1) by using the model proposed in a recent
work of Bray et al. [9]: ωc = ρc̃(1 − c̃)(1 − S)Iω/(I1 − I2), where S = ρc′′2/(ρc̃(1 − c̃)) is the
segregation factor and Iω, I1, I2 are integral quantities that can be calculated from flamelets properties.

4 Application to a flame stabilized by the sudden expansion of a 2-D channel

In this abstract, we focus on the simulation of 2D turbulent flame stabilized by backward facing steps
(ORACLES experiment ; Besson et al. [6]). In this experiment two superimposed fully developped
turbulent channel flows of fully premixed reactants of propane and air are exposed to a sudden expan-
sion, see Fig.(1). In the case investigated here the equivalence ratio of the mixture in both channels is
set to 0.8. The algebraic model described in the previous sections has been incorporated in the CFD
code developed by EDF, Code_Saturne. The mesh retained for the numerical simulations is made of
50000 hexahedral cells. The inlet boundary conditions applied to the computational domain have been
optimized thanks to preliminary calculations, see Robin et al. [10]. The field of the mean chemical rate
obtained from simulation is presented in Fig.(1).

Two numerical simulations were performed, (i) one that uses the new model for the turbulent transport
terms described in the previous sections and (ii) another one that relies on classical models for these
turbulent transport terms, i.e. gradient law and k−εmodel. A very good agreement between calculations
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and experimental data is obtained for the mean velocity fields using both types of closure, see Fig.(2).
However, only the use of the new model for the turbulent transport terms provides (i) an increase of
turbulent kinetic energy of the same order of magnitude as the experimental one, although a slight
underestimation of the maximum is observed and (ii) a reversal of the sign of the turbulent scalar flux
so that it becomes counter gradient almost everywhere in the flame brush. As expected, only a small
area in front of the flame brush (fresh gas side) is found to be of the same sign as the gradient law. This
gradient-like diffusion zone is required for the flame brush to be stabilized. Moreover, it is remarkable
that the use of such an algebraic model provide better results than those obtained previously with the
most recent second order closures [11].

The algebraic model for the turbulent transport terms proposed here is simple to incorporate in CFD
codes and gives rise to a very good behavior when compared to experiments. In view of the discrepancies
still observed in Fig.(2) of the present work, concerning the profile of turbulent kinetic energy, it must
be recalled that in the calculations reported here the indirect thermal expansion effects have not been
taken into account yet. Addition of this contribution is the purpose of ongoing work.
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