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1 Introduction 
The potential of devastation of industrial installations, nearby houses and businesses and sadly 
enough: the potential of fatalities and serious injuries due to vapour cloud explosions is unfortunately 
still being demonstrated on a regular basis. Recent examples of this potential include the following 
accidents Buncefield (2005 [1]), Texas City (2005 [2]) and Toronto (2008 [3]), whereas past 
experiences can be found in overviews published by both insurers [4, 5] and researchers [6, 7]. 
The majority of research performed in the field of vapour cloud explosions has mainly been 
addressing two main areas of attention: prediction of the consequences of vapour cloud explosions and 
trying to understand the main combustion mechanisms governing vapour cloud explosions. 
Examples of research into prediction methods include the development of prediction tools for blast 
generated by deflagrative flames such as similarity methods [8] and 1-D numerical methods (e.g. [9]), 
the development of simple fuel-air blast prediction methods using such tools as a starting point: Baker-
Strehlow-Tang [10], the Multi-Energy method [11], the Congestion Assessment Method [12] and 
dedicated CFD-codes such as AutoReagas [13] and FLACS [14]. 
Examples of studies addressing research into governing combustion mechanisms in vapour cloud 
explosions include those addressing flame instabilities [15, 16], combustion dominated by expansion 
flow generated turbulence (e.g. [17-20]) and DDT and detonation [21, 22]. 
 
Very little attention has however been given to mitigation of vapour cloud explosions, i.e. methods 
aiming at limiting the consequences of vapour cloud explosions with the exception of siting issues 
which considers e.g. re-locating control rooms or strengthening these. For siting the aforementioned 
simple fuel-air blast prediction methods are used. The paper addresses different potential methods to 
mitigate vapour cloud explosions and highlights research needs to improve or develop these methods 
further. 

2 Design of plant details and layout 
Dedicated CFD-based predictive tools such as FLACS [14] developed for describing the combustion 
process in expansion flow generated turbulence at congestion open up for the possibility of designing 
industrial sites in such a way that explosion effects are limited. This is possible by e.g. limiting the 
density of the equipment in installations in combination with limiting maximum flame path lengths, 
introduction of open areas in between installations and special design details limiting e.g. gas build-up 
in heavily congested areas by locating such areas at a certain height limiting the possibility of gas-
build-up inside these areas for heavy gas releases. The limitation of the density of the equipment in 
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installations in combination with limiting maximum flame path lengths can also be used to avoid the 
possibility of transition to detonation. In addition these CFD-tools can be used to predict local drag 
loading on e.g. piping and piping supports. Design of these items to withstand these loads may prevent 
serious escalation after an explosion.  
 
This mitigation measure is only possible during the design phase of plants and is in practice not 
feasible anymore once a plant is in operation. 
 
Strong demands need to be put to the predictive tools to design installations as described above using 
these tools. Due to limitations in computer resources many of the processes ongoing during the fluid 
dynamics and combustion processes cannot be resolved by the computational grid used. These 
processes are therefore most commonly described by so-called subgrid models [14]. Subgrid models 
are used for describing flow resistance by, turbulence generation at and flame folding around 
geometry details not resolved by the computational grid used. Full-scale experiments investigating the 
effects of congestion on the course of explosions have shown that small details of congestion have a 
strong influence on the overall explosion effects [23]. In the light of the importance of small 
obstructions and the continuous need to use subgrid models these need additional attention, especially 
flame propagation around subgrid obstructions [14]. Also the combustion models in these dedicated 
CFD-models need attention. Considering burning velocity models uncertain areas include 
representation of mixtures of fuels for both laminar and turbulent combustion, the influence of 
temperature and pressure on laminar and turbulent combustion [24, 25], fuel concentration 
dependency and modelling of quasi-laminar and turbulent combustion [26, 27, 28], including the 
effect/possibility of local quenching of turbulent flames. Implementation of DDT or improvement of 
criteria indicating conditions allowing for DDT [29] is essential for vapour cloud explosion prediction 
tools. 

3 Water Deluge 
A very promising technology to limit the consequences of vapour cloud explosions is the use of water 
deluge. This technology can be used on existing facilities but implies the installation of a water deluge 
system. Further one needs the availability of large amounts of water upon demand. The water deluge 
system shall be activated before ignition which would also imply installation of a well-designed gas 
detection system. The positive impact of water deluge has been documented extensively [30-32]. It has 
been demonstrated that only droplets smaller than 10-20 m will affect flame propagation due to 
evaporation in the flame (in methane-air mixtures). Larger droplets need to break-up before having an 
impact. Hydrodynamic forces acting on droplets in an accelerating flow will allow droplets to break-
up as long as these droplets are not able to adapt to the flow accelerations. Flow accelerations 
occurring during explosions in congested areas are able to break-up droplets larger than typically 200 
m [32]. A droplet break-up criterion is given by the Weber number (We): 
 

2v d
We




  (1) 

 
where ρ = density of gas mixture stream (kg/m3) 
 v = velocity of the gas mixture stream relative to the droplet (m/s) 
 d = diameter of the water droplet (m) 
 σ = surface tension of the water (N/m) 
 
The criterion predicts water droplet break-up when the Weber number We = 10 or larger.  
 
Reported experiments show that the effect of water deluge on flame propagation can be twofold: flame 
accelerations due to turbulence generated by the water flow if the water droplet break-up criterion is 
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not met; mitigation if the criterion is met. Large-scale experiments show that maximum explosion 
overpressures generated by vapour cloud explosions in a congested area may be reduced by a factor of 
20 or more (maximum overpressures of 10 bar or more were reduced to 0.5 bar or less) [23]. Models 
to predict the consequences of water deluge as included in FLACS [14] give satisfactory results in 
spite of their simplicity [33]. To improve the model more information needs to be developed regarding 
the mechanisms of initial turbulence generation (in relation to the water flux into the protected area 
and dimensions of the protected area itself), water droplet break-up dynamics and how to improve the 
efficiency of the breaking-up (e.g. using additives) and the influence of water droplets on flame 
propagation depending on the water droplet size and water droplet concentration. The latter needs to 
be investigated for several fuels. Some initial results on water droplet break-up dynamics are presented 
in Figures 1 and 2 [34]. Figure 1 shows an example of droplet break-up in a steady flow. This type of 
break-up (known as bag-jet break-up) occurs at Weber number of We = 17 – 30. At lower Weber 
number break-up occurs according to the inverted bag break-up mechanism (here the central pillar of 
the bag-jet mechanism as seen in Figure 1 fails). 

 

  

 

 

Figure 1. Water droplet break-up mechanism (type inverted bag-jet break up). Measured in 30 cm x 30 cm cross-
section wind tunnel. Initial droplet size 4.2 mm. Steady flow of 15 m/s. [34]. 

Water break-up dynamics were studied in both steady and accelerating flows (the latter generated by 
an explosion). The droplet distribution after break-up indicates that only 33 % of the original droplet 
results in small droplets potentially contributing to mitigation. The duration of droplet break-up is 
approximately 30 ms. 

4 Flame inhibitors 
Recently an alternative suggestion was made, viz. the use of flame inhibitors by either injection into 
the flame directly (post-ignition detection) or by injection into the developing flammable gas cloud 
upon pre-ignition gas detection. 
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The potential of the use of flame inhibitors was investigated experimentally on both laboratory scale 
(in a 20 l sphere) and medium scale in a 50 m3 congested vented enclosure. The 20 l sphere 
experiments were used to derive fundamental combustion properties in the presence of flame 
inhibitors. The medium-scale experiments investigated the potential of using this technology in reality 
both as a pre- and post-ignition agent [35, 36]. Especially the use of flame inhibitors as a pre-ignition 
agent appears very effective. Results of experiments using flame inhibitors as a pre-ignition agent 
(potassium carbonate) performed in the 50 m3 congested vented enclosure are shown in Figure 2 for 
several hydrocarbon gases. Reference tests without inhibitor are performed for comparison. 
 

Flame Inhibitors - Influence on various gases.
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Figure 2. Peak explosion pressure in the 50 m3 module for a series of hydrocarbon fuels using potassium 
carbonate as an inhibitor. The quantity of inhibitor was varied and ignition was effected 2 s after inhibitor 
injection. 

The experiments revealed a big dependency of the efficiency of flame inhibitors on the gas 
concentration: flames in lean mixtures can be quenched using relatively low concentrations whereas 
flames in rich mixtures are much less affected. This needs to be understood better. A practical means 
for injecting flame inhibitors into released clouds as a pre-ignition agent or into flames when applied 
as a post-ignition agent needs developed. 

5 Conclusions 

The paper argues that more attention should be given to mitigation of vapour cloud explosions. This is 
possible through design of (petro-) chemical facilities using CFD-based prediction tools, activation of 
water deluge upon gas detection or application of flame inhibitors both as a pre-ignition or post-
ignition agent. Several recommendations have been given regarding research and development to 
improve the prediction tools and the mitigation measures of water deluge and injection of flame 
inhibitors. 
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