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1 Introduction

Quenching of chemical reactions in the presence of strong gasdynamic expansions has been identified
as an important mechanism controlling ignition behind decaying shocks, as applied to the detonation
wave reaction zone structure [1-3], detonation wave initiation by Taylor-Sedov blast waves [4], det-
onation diffraction at an abrupt area change [5, 6] and shock induced diffusion-ignition of transient
under-expanded jets [7]. To appreciate the generic mechanism controlling this process, consider the
exothermicity following a mass element of reacting inviscid fluid that has just been compressed by a
shock wave, or suddenly heated by other means. The subsequent rate of change of sensible energy e of
the fluid particle (by definition a closed thermodynamic system) is given by the first law of thermody-
namics, which relates it to the rate of energy addition, in this case by chemical reactions, and the rate of
work done on the particle by the surrounding fluid.

De

Dt
= q̇ +

p

ρ2

Dρ

Dt
(1)

Here the derivatives denote the usual material derivative (or Lagrangian derivative) in fluid dynamics
following a fluid element of fixed mass. The heat release term, q̇, is usually positive and tends to increase
the temperature, potentially leading to a thermal explosion[12]. For the flow behind a decaying shock
wave, the second term, (p/ρ2)(Dρ/Dt), is negative due to the volumetric expansion of the fluid particles
responsible for the shock weakening. This expansion term thus acts as an energy sink. Hence there are
two competing terms that affect the ignition process, whose balance dictates the rate of temperature
change and the outcome of the thermal explosion process. The problem thus bears close similarity to
the well-studied problem of homogeneous ignition in the presence of heat loss to the container walls
(e.g.,[8]).

Lundstrom and Oppenheim[1], henceforth denoted as LO, first suggested that the reactions behind de-
caying shocks can be altogether quenched. They employed an extension of a quasi-steady ignition model
for the thermally neutral induction zone coupled with the flowfield dictated by a decaying self-similar
blast wave. The ignition model is however not realistic because no energy is liberated during the in-
duction period, which would otherwise influence the ignition time history of the thermal explosion. At
present, it is not clear whether such criticality is a consequence of the assumed thermally neutral reaction
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zone in their model, or whether more realistic reaction models will eventually ignite, albeit after a very
long time.

In a study of initiation of detonations, Eckett, Quirk and Shepherd[4], henceforth denoted as EQS, sug-
gested that such criticality exists for reactions behind decaying shocks. They derive an approximate
asymptotic model based on one step kinetics by assuming that the losses can be estimated at the state
immediately behind the shock, which they then apply to complex chemistry calculations for validation.
The complexity of the set-up, however, could not easily substantiate the conclusions reached. Maxwell
and Radulescu[7] also studied this criticality of ignition using complex chemistry for self-similar reac-
tive jet start-up. Likewise, the use of complex chemistry prevented them to clearly identify what causes
extinction.

The present work thus attempts to clarify the role of the competition between reactivity and expansion
on the ignitability of the gases exposed to volumetric expansion in a simple well-posed generic problem
amenable to analysis. To simplify the analysis, following LO, it is assumed a priori that the expansion
term follows a power law in time, i.e.,

ρ ∼ t−n (2)

In many cases, the constant n can be obtained analytically under different approximations for self-similar
blast wave problems of the type considered by LO and EQS, for self-similar jet start-up [9] and also for
steady problems, where the expansion can follow a power law in time along a streamline due to flow
divergence. The equivalence between steady hypersonic flows and self-similar unsteady blast waves
[10] permits us to interchangeably apply the same results to both steady and unsteady flows. Evidently,
the same problem can be also posed as a gas contained in a piston-cylinder assembly, where the piston
is recessed at a prescribed rate such that the gas density decays as a power law in time. Furthermore,
a local self-similar solution can always serve as an intermediate asymptotic regime in more complex
problems [11]. It is thus this generic form of loss term that we are assuming in the present study, in
order to clarify the dynamic evolution of the ignition process and the inherent ignition criticality.

2 The gas model

Starting with the exact energy equation (1) for an inviscid non-heat conducting reactive gas, similar
to LO, we start with the ansatz that density can be assumed to decay as a power law in time, i.e.,
Dlnρ/Dlnt = −n, where n is a constant to model the self-similar expansion. For simplicity, we will
assume an ideal gas with constant specific heats, where the specific internal energy, pressure and specific
gas constant are given respectively by e = cvT , p = ρRT , cv = R/(γ − 1) where R is the ideal gas
constant, T is the temperature and γ is the isentropic exponent. Both the reactant and product are
assumed to have the same constant specific heat and molar mass, again for simplicity. The conservation
of energy can thus be written as:

cv
DT

Dt
= −QDα

Dt
− nRT

t
(3)

where Q is the chemical energy available, Dα/Dt represents the rate of reactant depletion, and α is a
progress variable representing the molar fraction of reactant, ranging from 1 to 0. For simplicity, the gas
is assumed to undergo an irreversible first order Arrhenius reaction such that the rate of depletion of the
reactant is given by:
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Dα

Dt
= −kαe−Ea/RT (4)

where Ea is the activation energy and k is the reaction rate constant.

The initial conditions can be formulated when the unreacted mass particle (α = 1) first crosses the
shock at some reference time t = t1, or is when the mass particle is injected in an expanding flow, and
reaches the initial temperature T = T1. This way, the variable t1 can serve as a Lagrangian coordinate
for that particular particle path. It is also convenient to introduce a new time coordinate t′ which denotes
the time elapsed after the particle has been shocked, i.e., t′ = t − t1. Time and temperature are non-
dimensionalized by t̃ ≡ t′/tig; T̃ ≡ T/T1. For analytical convenience we have used the constant

density ignition delay as the characteristic time scale (see below), which is given by tig = k−1εq−1e1/ε

where ε and q are respectively the non-dimensional inverse activation energy and heat release given by
ε = (Ea/RT1)−1 and q = Q/(cvT1). Therefore, the governing equations become

DT̃

Dt̃
= εαe1/εe−1/εT̃ − n(γ − 1)T̃

t̃+ nDa
;
Dα

Dt̃
= −εα

q
e1/εe−1/εT̃ ; T̃ (t̃ = 0) = α(t̃ = 0) = 1 (5)

Clearly, the two parameters entering the temperature evolution equation controlling the expansion is
the exponent n and a Damkohler number Da, which is given by the ratio of the expansion time scale
texp = (Dlnρ/Dt)−1 = t1/n evaluated at the initial time t1 and the characteristic ignition delay in the
absence of expansion tig, yielding

Da ≡
texp
tig

=
t1/n

tig
(6)

3 Numerical solution

The evolution of the temperature was first determined numerically by integrating the system of first
order ordinary differential equations (5). An example showing the character of the solution obtained is
shown below for parameters ε = 0.1, γ = 1.2, q = 20, n = 1. The power law exponent for density
decay corresponds approximately to spherical Taylor-Sedov blast waves.

It was found that below a critical value of Damkohler number, the ignition is quenched. Figure 1
shows an example of the temperature evolution obtained near the ignition criticality for values of the
Damkohler number bracketing the critical condition for ignition. In this case, the critical limit is between
Da = 0.99454922 and Da = 0.99454923. For values above this threshold, ignition was observed
at earlier time. An ignition event is characterized by a sudden increase in temperature and complete
consumption of the reactant. For sub-critical values of Damkohler number, a more rapid extinction was
observed as the Damkohler number was lowered. This can be seen in Figure 1. Also shown is the non-
reactive solution (obtained for q = 0) of equation (5) given by TNR = (t/nDa + 1)−n(γ−1) and the
solution obtained without the loss term displaying the classical thermal explosion character [12]. A few
observations are noteworthy. First note that there is a clearly defined separatrix between the solutions
that lead to ignition from the ones that do not. As the critical Damkohler number is sought with further
precision, the time for ignition shifts to larger times, which can be orders of magnitude longer than in
the homogeneous case. Another interesting observation pertains to the change in solution behaviour in
the subcritical case of ignition, below the separatrix. After the failed ignition event, it can be seen that
the rate of decay of temperature follows the non-reactive solution, suggesting that the reactions are fully
quenched.
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4 Critical ignition limit

In order to get further insight into the dependence of the critical Damkohler number on the parameters
of the system, we have conducted an analysis based on large activation energy asymptotics. Since in
practice the activation energy is usually quite large, i.e., ε is small, we seek an asymptotic expansion of
the form:

T̃ = T̃1 + εT̃2 +O(ε2);α = α1 + εα2 +O(ε2) (7)

The exponential can thus be approximated as usual

e−1/εT̃ = e−1/ε(T̃1+εT̃2+O(ε2)) = e(−1/ε)(T̃1−εT̃2+O(ε2)) = e−T̃1/εeT̃2+O(ε) (8)

The governing equations (5) become

D

Dt̃

(
T̃1 + εT̃2 +O(ε2)

)
= εαe(1−T̃1)/εeT̃2+O(ε) − n(γ − 1)

T̃1 + εT̃2 +O(ε2)
t̃+ nDa

D

Dt̃

(
α1 + εα2 +O(ε2)

)
= −ε(α1 + εα2 +O(ε2))

q
e(1−T̃1)/εeT̃2+O(ε) (9)

T̃1(0) + εT̃2(0) +O(ε2) = α1(0) + εα2(0) +O(ε2) = 1

We seek the solution to the system above in the asymptotic limit ξ ≡ n(γ − 1)ε−1 = O(1). This last
requirement essentially puts bounds on the expansion strength and specific heat ratio. Three cases can
be considered

n = O(ε)and(γ − 1) = O(1);n = O(1)and(γ − 1) = O(ε);n = O(εν)and(γ − 1) = O(ε1−ν) (10)

The first case in (10) corresponds to a weak expansion. The second case corresponds to a strong expan-
sion in the Newtonian limit γ → 1, while the latter is the general intermediate case. Imposing (10) in
(9), we get to leading order

DT̃

Dt̃
=
Dα1

Dt̃
= 0, T̃1(0) = α1(0) = 1 (11)

From which we deduce that

T̃1(t) = α1(t) = 1 (12)

At order ε, we get

DT̃2

Dt̃
= eT̃2 − ξ

t̃+ nDa
,
Dα2

Dt̃
= −e

T̃2

q
, T̃2(0) = α2(0) = 1 (13)

These expressions can be integrated exactly to find the dependence of the perturbation on time given
the appropriate Damkohler number as initial condition. Before doing so, it is interesting to investigate
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the importance of the parameter ξ in front of the loss term by integrating (13) with either the energy
source term or the loss term individually. The chemical source term allows the exponential of the
perturbation temperature to grow like (1− t̃)−1 and become infinite as t̃ → 1 (hence our choice for
the characteristic ignition time). On the other hand, the loss term causes the exponential of temperature
decay like (t̃/nDa + 1)−ξ. Clearly, for ξ < 1, the production term will always dominate the loss term,
hence ensuring that ignition is always achieved. The more interesting situation, however, is when ξ > 1.
In this case, the loss term can overcome the production term if the Damkohler number Da is sufficiently
small. Formally integrating (13) yields

T̃2(t̃) = −ξ(ξ − 1)−1ln(Φ)− ln
(

(ξ − 1)−1Φξ/(ξ−1)(nDa + t̃)
(

1− Φ1/ξ(nDa + t̃)ξ−1
))

(14)

Φ =
1− ξ + nDa

(nDa)
ξ

(15)

When ξ > 1, T̃2 grows to large values in finite time only if Φ > 0. We interpret this condition as the
condition for ignition. The resulting critical value for the Damkohler number becomes

Da
∗ =

γ − 1
ε
− 1
n

(16)

or in dimensional terms,

t1
tig

= n(γ − 1)
Ea
RT1

− 1 (17)

Figure 2 shows the comparison between the analytical prediction for the critical Damkohler number as a
function of inverse activation energy for ξ = 2 and n = 1 and letting the inverse activation energy ε and
isentropic exponent γ vary. For large activation energies (1/ε), the agreement is very good. At a small
activation energy of approximately 3, which is usually smaller than most typical values for combustible
gases, the prediction overestimates the numerically determined limit by approximately 5 percent, which
can be considered quite good.

5 Conclusions

In conclusion, we demonstrated numerically and analytically using a generic simple model that the
presence of a power-law expansion can suppress ignition provided the expansion is strong enough or
the chemical reactions sufficiently sensitive to changes in temperature. The present study thus confirms
the earlier findings of LO, EQS, (Maxwell and Radulescu)[7] and [13] for the existence of a critical
expansion rate that can suppress ignition under different reacting fluid dynamic problems.
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Figure 1: Temperature evolution near the crit-
ical ignition bifurcation; a) homogeneous ther-
mal explosion, b) inert self-similar expansion, c)
Da = 1, d) Da = 0.99, e) Da = 0.99454923,
and f) Da = 0.99454922.
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Figure 2: The critical Damkohler number
obtained numerically (points) compared to the
closed form solution for ξ = 2, n = 1 and
varying the inverse activation energy ε and γ.
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