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1 Introduction 

Transition from deflagration to detonation or from shock wave to detonation one is rapid non 

stationary process with different scale of flow changing. In period of deflagration gas velocity is usual 

essential subsonic and systems of equations, simulating this process can be numerical integrated with 

large scale time steps. Near moment of transition to detonation system of first-order ODE's kinetic 

equations became stiff one and very small time step should be used.  

Different mathematical models are used for simulation of detonation process: Euler or Navier 

-Stokes equations, including or ignoring heat-conductivity and diffusion terms for gas dynamics 

process, and full or simplified system of kinetic equation. As usual in numerical simulation splitting of 

time-step operator into gas dynamics step and kinetic step is used. In addition to physical different 

scale of time step of this two process sometimes algorithms of different numerical accuracy are used. 

Investigation of summary numerical accuracy of whole time step operator can be found, for example, 

[1] 

2 Mathematical model 

The mathematical model introduced in [2] and corresponding simplified model of two-phase chemical 

reaction, including the induction period and the subsequent reaction period was used for numerical 

simulation of detonation in gas mixes oxygen-hydrogen. Gas was assumed non viscous. the system of 

the equations of ideal gas and the kinetic equations in the integral form for axial symmetric flows can 

be presented as follows: 

0ˆ/   dSFndVQdtd
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where conservative unknowns vector will be: ),(),,,(),,(   BemUBUQ


,  /1  - 

parameter of induction,   - parameter of reactive component density, ),,0,0,0,0(   ww  - 

source term, vector of fluxes normal to boundary of control volume can be written in the form: 
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where qVRTeRTP   2/)1/(, 2


, q  - energy of reaction. 

Despite of simplicity this kinetic model is widely spread because of it preserves mean features of full 

system of kinetic equations: Arrhenius hypothesys of functions form, period of induction instead of 

time period of radical component appearance and backward reaction possibility. Essential features of 

coefficients in Arrhenius formulae are evident for simplified system (3) and not clear for full system of 

kinetic equations. Non dimensioning procedure was made analogous to [3]. 

3 Numerical algorithm 

Two types of time discretisation were used. The first method consist of splitting the explicit time step 

operator in symmetric consequence of operators in directions (this methods preserve 2-nd orders of 

time accuracy if operators in direction are 2-nd order of accuracy).  The other way of time 

discretisation is using of explicit third order Runge-Kutta method, which gives 3-rd order accuracy for 

time. On the basis of both schemes explicit time step algorithm for simultaneous decision of gas 

dynamics and kinetic equations, described lower, was introduced. For spatial discretization vector of 

fluxes in the normal to the boundary direction is determined on the basis of two similar TVD - 

scheme, the first is the slightly improved version of the Harten scheme [4], that was suggested in [5]. 

and the second is Chacravarthy one [6]. For first scheme special operator of artificial compression and 

two types of limiter operators were used: operator minmod introduced by Harten and operator 

superbee, introduced by Roe. For the second scheme original limiter operator, introduced by authors, 

was used. Let the time step operator corresponding to (1) will be: 
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Than multi step explicit Runge -Kutta operator for system (1) solution will be: 
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This procedure gives m  -th order accuracy for time. We used Runge -Kutta scheme of third order 

accuracy. The numerical approximation of the time step operator (3) takes form 
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where summation is made over sides of control volume, and i

n

i SF ,  are vectors of fluxes through this 

sides. Let explicit operator of numerical solution of ODE’s system (2) (developed, for example, on the 

Gear’s method) will be ),,,( 11   nnnnn ttQwOw


. If we will use TVD scheme of third order of 
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accuracy [6] for spatial approximation of fluxes 
n

ii FS  in (4), full numerical explicit algorithm for 

simultaneous decision of gas dynamics and kinetic systems of equation can be written in the form: 
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4 Grid construction 

For elliptic numerical grid generation Thompson type algorithm [7], based on solving the system of 

three Poisson equations, was used. Curvilinear elliptic grids of this type are close to orthogonally ones 

and preserve property of equidistance of theirs points. That’s why it needs essentially less points of 

grid than for Cartesian grid for the same accuracy of numerical decision. Sequence of grids with 

doubling number of points where used for confirming convergence of numerical decisions. 

5 Results and discussion 

Flows in channels with constrictions 

For testing algorithm (5) flows in cylindrical channels with constrictions (investigated in [8],) were 

numerically simulated. Different type of detonation engines constructions consist of nozzles of special 

form, ring nozzles for example. In theoretical and numerical investigation widely used assumption that 

those nozzles are supersonic Laval nozzle. In reality this is not ideal Laval nozzles. Deflagration of gas 

mixes and transition to detonation can appear in this channels. The calculation grids (from 5000 till 

50000 points) for two cylindrical channels with one and two constrictions of special form are depicted 

on the Fig.1. 

a  

b  

Fig.1 Calculation grids for two channels with one (a) and two (b) constrictions (every fifth line is 

drown). 

At the initial time moment gas mix with reactive component fulfills cannels, except their left 

ends before the constrictions. These areas, separated by diaphragms, consist of ideal gas with high 

pressure and temperature ( KTatP 794,26 11  ). At 0t  diaphragms are destroyed and shock 

wave of high intensity propagate to the region of low pressure. Shock wave initiates high speed 

deflagration, which transferred to detonation wave for configuration Fig.1,b and not transferred to 

detonation for configuration Fig.1,a. This is depicted on Fig.2 a,b, by isopicts (light grey lines) and 

level lines of density reactive component of gas mix (black). Detonation wave on Fig 2,b coincide 

with frontal shock wave. Deflagration front on Fig.2,a is far back from front shock wave. As was 

shown in [8] detonation appears initially in region between constriction and strengthened in 

cylindrical part of small radius after second constriction. This result was repeated in present 

calculations. 
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a  

b  

Fig.2 Isopicts (grey) and level lines of density of reactive component (black) of flows in channels with one (a) 

and two (b) constrictions. 

Flow in pulsing detonation engine 
A pulse detonation engine is a type of propulsion system that utilizes detonation waves for efficient 

combustion of the fuel and oxidizer mixture. Different designs of detonation engine have been 

proposed and investigated during the past decades.  The advantage of type of detonation engine, 

introduced in [9] are:  the absence of moving parts in its design; continuity injection of fuel into 

resonator;  very high frequencies of cycles. This engine comprises a reactor, where fuel-oxidizer 

mixture is prepared for detonation and a and resonator chamber of semi-sphere form, Fig.3,a. 

a b  

Fig.3 Scheme of Resonator of PDE with ring nozzle (a), and calculation grid (every fifth line is drown), includes 

semi-sphere of resonator and part of outer space of jet exit (b). 

a b  

Fig.4 Isopicts (grey) and level lines of density of reactive component (black) of flows in resonator and part of 

outer space for 8.0/ criticalexit PP - (a) and 08.0/ criticalexit PP  - (b).  

Gaseous mixture flows from the reactor into the resonator through a ring nozzle. The parameters that 

determine the flow apart from the composition of the fuel-oxidizer mixture are the magnitudes of 

pressure and temperatures in the reactor and in the external space and the sizes of the exit cross-

section and the critical cross-section of the ring nozzle. On the exit section of ring nozzle the gas 
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dynamics parameters are defined as the decision of Laval's nozzle problem. In the resulted variants of 

calculation the values of parameters, similar to used in [9], have been chosen: 

2/,5.3/ 00  TTPP rr ; Two types of resulting flows were defined as numerical simulation results: 

flow with low amplitude of gas dynamic parameters frequencies for ratio of pressure in the Laval 

nozzle 8.0/ criticalexit PP ; and essential periodical one  for 08.0/ criticalexit PP . 

The results of calculations, illustrated on Fig.4,a,b, shows up, that with using the parameters of flow, 

close to specified in [9], pulsing character of flow is observed, however a detonation of the gas mixture 

appears not in a vicinity of the center of sphere, but in vortical structures near the ring jet. It seems, 

that such mechanism of appearance of the detonation is more realistic for essentially non-stationary 

and pulsing flows then one in [9], where declared the exact focusing of the shock wave in the center of 

the sphere. 

Even in periodical flow (Fig.4,b) amplitudes of density and velocity in exit section of resonator rich 

their maximum values not at every time cycle. This results confirm ones of [10], where numerical 

simulation where made for different meanings of pressure in reactor: 5.3/ 0 PPr . 

6 Results and discussion 

The present results of numerical simulation of flow in detonation resonator of PDE are compliment to 

ones of [9,10]. As was emphasized in [10] investigation with this PDE construction must be continued 

with different meanings of gas dynamics parameters, constructions of resonator and nozzles and 

realistic compounds of gas mixes 
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