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1 Introduction 

The interaction of shock waves with the flame fronts is an important mechanism leading to flame 

acceleration, transition from deflagration to detonation (DDT), transition to turbulence. It results in 
distortion of the flame, the increase in the energy release rate, can lead to considerable flame 

acceleration and DDT and it is of great practical interest in the context of safety problem. There have 

been numerous of previous attempts to simulate the shock-flame interaction numerically using a 
simplified chemical model of a one-step exothermic reaction. However, a one-step reaction model 

cannot reproduce the main properties of the combustible mixture such as induction time in chain-

branching kinetics, as well as an increase of the reaction rate. Taking into account considerable 

difference in the induction times obtained from detailed chemical models and from one-step models, 
the results of simulation using a one-step model must be considered with greatest discretion. It was 

shown [1] that the evolution to detonation from the temperature gradient is profoundly different for 

detailed chain branching kinetic models than for one-step kinetic models and that the steepest 
temperature gradient capable to initiate detonation is by orders of magnitude more shallower 

compared to that predicted from a one-step model for highly reactive mixture (H2/O2) and for slow 

reactive mixtures (methane/air). Use of reliable detailed chemical kinetic models is important for 

correct understanding of combustion phenomena since results obtained using chain-branching 
chemistry models are considerably different from that found for one-step chemistry. It is therefore 

important to investigate and understand the differences in the shock-flame interaction between chain-

branching kinetics and the predictions from one-step models.  
 In this work we report selected results of high resolution two-dimensional numerical simulations 

with a detailed chemical kinetics of the series of comprehensive study of the interaction of a flame 

with an incident shock and then with a shock reflected from the endwall. The flame distortion by the 
shocks, the increase of the energy release rate in the system, and the transition from deflagration to 

detonation (DDT) caused by the shock-flame interaction are investigated.  
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2 Formulation of the problem, numerical method  

The main focus of the present studies is to examine how the shock-flame interaction amplifies shocks 
and flame instabilities, generates a flame brush and leads to the transition to detonation in hydrogen-

oxygen mixture. Emphasis is on comparing and contrasting the results of simulations using a detailed 

chemical kinetics with previous studies based on a one-step chemical kinetics. The high resolution 

simulations modeled a flame ignited near the left closed end and propagating to the right in the two-
dimensional rectangular channel. A driven shock propagates from the right open end to the left. The 

initial velocity of the gas is set to zero everywhere ahead of the shock and the flame. We performed 

two series of simulations: for smooth slip adiabatic walls and for no-slip boundary conditions at the 
channel walls to expose clearly the features of the flame-shock interaction. In both cases the incident 

shock strength varied shM 1.2 2.5  . Initial temperature and pressure were 0T 298K , 0P 1bar . 

We investigated effects of the shock-flame interaction examining the flame distortion by the incident 
and reflecting shocks, how the flame evolves after the interaction, how it modifies the energy release 

rate in the system, how the Richtmyer-Meshkov (RM) and Kelvine-Helmholtz (KH) instabilities grow 

and influence the development of the flame brush, and how the initial flame perturbations influence 

the growth rate of RM instability.  
 The computations solved the two-dimensional, time-dependent, reactive Navier-Stokes equations 

for compressible flow including the effects of viscosity, thermal conduction, molecular diffusion, real 

equation of state and detailed chemical kinetics for the reactive species H2, O2, H, O, OH, H2O, H2O2, 
and HO2 with subsequent chain branching and energy release [2, 3]. We used the real equations of 

state for the reactive species and combustion products with the temperature dependence of the specific 

heats, heat capacities and enthalpies of each species borrowed from the JANAF tables. The viscosity 
and thermal conductivity coefficients of the mixture were calculated using the Lennard-Jones 

potential. Coefficients of the thermal diffusivity conduction of i-th species i i pic / Pr   were 

expressed via the viscosity coefficient i  and the Prandtl number, Pr 0.75 . Details of the 

computational method were described and tested extensively in [2, 3, 4]. Its validation, convergence 

and resolution tests with the meshes up to 64 computational cells per flame width were presented in 
[4].  

3 Shock-flame interaction  

This section is devoted to the study of the flame instability development. The flame acceleration arises 

due to increase in flame velocity which for an initially laminar flame front is manifested as an increase 
in flame surface due to wrinkling of the flame front caused by the hydrodynamical instabilities. 

   

Figure 1. Growth of the flame front surface and the flame velocity resulted from the flame-shock 

interaction (left). Comparison of the flame surface growth rates in cases of free propagating flame and 
flame affected by the shock (right). 
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The perturbation resulting from the shock-flame interaction grows due to the Richtmyer-Meshkov 
(RM) instability and this leads to the additional increase in the flame surface and the burning rate. 

Development of the instabilities is analyzed accurately and clear scenario of the increase in flame 

surface and burning rate is formulated. 
 A series of simulations was performed to investigate the development of the RM instability 

resulting from the shock-flame interaction and how it influences the energy release rate depending on 

the amplitude of the initial flame front perturbation and strength of the incident shock. The flame 

accelerates due to the wrinkling of the flame front caused by the instabilities and consequently the 
increase of the flame surface. Depending on the strength of the incident shock there are different 

scenarios of the shock-flame interaction and the transition to detonation. Results of the simulations 

show a complex sequence of events: from the interactions of an incident shock with an initially 
laminar flame, development of the RM instability and wrinkled flame front and finally the emergence 

of a self-sustained detonation with typical detonations cells structure. The calculated evolution of the 

flame front surface and the flame velocity resulted from the flame-incident shock interaction is shown 

in the left image in figure 1. Here Vp is the volume of the burned products which defines location of 
the flame front relative to the endwall; Pf/D shows the increase of the flame surface, where Pf is the 

flame surface area and D is the channel width; Uf=d(Vp/D)dt is the flame velocity. In order to isolate 

the impact of the RM instability, the flame front location in the right image of figure 1 are shown also 
for a flame propagating for the same conditions but without interaction with a shock. If the flame is 

allowed to grow with no shock interactions, the surface becomes slightly perturbed as the flame 

expands. The initial perturbations imposed on the flame front are small and barely seen at the startup 
conditions (stage 1 in figure 2). Later they are amplified either in the case of Landau-Darrieus (LD) 

instability development or in the case of the interaction with the incident and reflected shocks and with 

the flow generated by the flame. As the shock interacts with the flame, the RM instability on the large-

scale is triggered by the overall curvature of the flame. The effect of these interactions is the increase 
of the surface area of the flame, and as a result the energy release in the system increases. The flame 

evolution in this case and in the case of LD instability development is shown in figure 2. In the left 

image of figure 2 one can observe development of the linear (2) and non-linear (3) stages of RM 
instability triggered by the interaction of the initially perturbed flame with the incident shock. It is 

important to note that non-linear stage develops under influence of the rarefaction wave which causes 

additional expansion of the flame (see corresponding time interval (3) in figure 1 where the rate of 
flame deceleration decreases). 

   

Figure 2. Development of RM (left) and LD (right) instabilities. 1 – stages of initial spectrum birth out 

from initial perturbation; 2 – linear stages of instabilities’ development; 3 – non-linear stages of 
instabilities’ development; 4 – further flame evolution. 

 

 Further development of the flame (stage 4) is caused by the interaction with the reflected shock and 

secondary shocks and corresponds to the development of secondary instabilities. In case when there is 
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no interaction with shock (right image of figure 2) the flame develops due to the LD instability of the 
flame front which evolves out from initial perturbations: linear stage of exponential growth (2) and 

non-linear stage of harmonics interaction which causes flame stabilization (3). 

4 Deflagration to detonation transition  

The shock-flame interaction amplifies shocks and the flame instabilities, generates a flame brush and 

leads to the transition to detonation. Depending on the strength of the incident shock there are different 
scenarios of the shock-flame interaction and the transition to detonation [5]. The simulations show that 

the interactions of shocks and flames can create the conditions under which deflagration-to-detonation 

transition may occur. As an example, we present here results for three regimes of DDT: 1) transition to 
detonation triggered by the shock reflected from the back wall with the Mach number of incident 

shock in the range M=1.5-2.5; 2) transition to detonation for the case of weak shocks, M=1.2-1.5, 3) 

the case of a strong incident shocks and transition to detonation in the incident shock, M2.5.  
 Figure 3 shows typical scenario and the flow structure during DDT which occurs when the 

incident shock wave of initial intensity M=1.8 first passes through the flame, reflects from the back 
wall and then re-catches and passes through the flame front.  

  

Figure 3. Structure of the flow (left) and transition to detonation (right) during shock-flame interaction 

for the shock Mach number Msh=1.8.  
 

The plots on the right in figure 3 show the details of the interaction of the reflected shock and the 

flame. After the shock is reflected from the back wall and passes through the flame a large scale 

vortex (swirl) develops behind the reflected shock (figure 3- right) as well as two vortices are 
developing near the walls when the reflected shock catches the right surface of the flame. It is likely 

that they are enhanced due to the flame-rarefaction wave interaction. When the shock emerges from 

the right side of the flame, it is refracted, triggers the RM instability, and the overall effect is the 
formation of a jet near the boundary wall. This causes a pressure peak propagating along the flame 

surface, which is coupled with the reaction zone and next will transition to detonation.  

 When intensity of incident shock waves is smaller, the flame is accelerated behind the reflected 

shock. The accelerated flame generates the pressure peak and transition to detonation according to the 
mechanism of DDT described in [2, 3].  

 Figure 4 shows the case of the flame interaction and transition to detonation for a strong shock 

wave, M=2.5. In this case one can observe the incident shock (1), the shock refracted on the flame 
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surface (2) and the shock reflected from the flame surface (3). As a result, a triple point of three 
shocks intersection is formed: (4) in figure 5. The pressure is maximal in the triple point and it is 

quickly (with supersonic speed) spreads along the flame surface simultaneously amplifying due to the 

positive feedback between the pressure and the enhanced reaction rate in the reaction zone. Frames in 
the figure show zoomed images of the triple point (4), the detonation (5), and the retonation wave (6). 

One should note that the mechanism of detonation formation remains similar in the variety of cases: 

the flame couples with the pressure wave and transforms into detonation due to the concurrent 

increase of the pressure and reaction rate. 

 

Figure 4. Formation of the triple point and transition to detonation for a strong incident shock wave.  

5 Conclusions 

The results of the present study show that numerical simulations of the shock-flame interaction with 

account of a detailed chemical kinetics are qualitatively different from those used a one-step chemical 

model. The conclusion is that the development of the RM instability and the resulting rate of the 
energy release are profoundly different from those obtained with a one-step chemical model. Results 

of the simulations, which use simplified one-step kinetic must be considered with greatest discretion, 

taking into account huge difference in the induction times of a one-step model and a detailed chemical 
schemes. The validity of the conclusion based on the one-step kinetics that the detonation arises due to 

the Zel’dovich gradient mechanism in a spatial gradient in chemical induction time formed in hot 

spots and the like is questionable. The mechanism of transition to detonation is the pressure peak 
localization at the flame front which is enhanced in time exponentially due to the positive feedback 

between the pressure peak and the reaction. This exponentially growing pressure pulse then steepens 

into a strong shock, which is coupled with the reaction zone, and triggers the transition to detonation. 

In the case of no-slip boundary conditions the overall picture of the flow and shock flame interaction 
is considerably complicated by the flame acceleration caused by the wall friction, the flame stretching 

along the wall in the boundary layer and development of KH instability.  
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