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1 Introduction

It is a common notion in detonation theory that the effectdititision can be neglected in comparison to those
of reaction and advection][1]-]8]. However, there are imatiizns that such an assumption can be problematic.
For example, using grid sizes aroun@% m for their three-dimensional simulations of unsteddly-air deto-
nations, Tsuboét al. [8] report wave dynamics that show strong sensitivity to fiheness of the grid. While
apparent convergence of some structures was reportedalg@yote with regard to some particulars of the det-
onation structure “The present results cannot resolve exads-hatchings in the ribbon because of a lack of grid
resolution.” The presence of reaction dynamics and steagli@nts at micron length scales suggest that physical
diffusion has an important role to play. Indeed, Powels [@jveed that two-dimensional detonation patterns are
strongly grid-dependent for simulations of reactive Ewquations, but relax to a grid-independent dissipative
structure for a comparable reactive Navier-Stokes cdioumaThis suggests numerical diffusion is playing a sig-
nificant role in the inviscid limit and that one should comsithe introduction of physical diffusion to properly
capture the dynamics.

Consideration of the reaction-advection length scalesittelirby an inviscid detonation explains why such fine
scales are necessary. Powers and Paolucci [10] perfornpedial ®igenvalue analysis on a detailed kinéficair
model and showed for inviscid detonations that the lengatescfor a steady Chapman-Jouguet (CJ) detonation
can span five orders of magnitude near equilibrium, with tinalest length scale for an ambient mixture at
atmospheric pressure bein@~" m and the largest beint)—2 m; away from equilibrium the breadth of scales
can be even larger. These fine reaction scales are a matiifesiban averaged representation of the molecular
collision model in which the fundamental length scale isrttemn free path [11]. The choice of a one-step kinetic
model induces a single reaction scale, in contrast to théipteiteaction scales of detailed kinetic models. This
allows for the effects of the interplay between chemistrg tmnsport phenomena on detonations be more easily
studied. Such a model has been studied extensively; thititgtabhd non-linear dynamics are well understood in
the inviscid limit [12]- [18]. The goal of this paper is to liet the effects of diffusion on the long-time dynamics
of a detonation described by simple one-step kinetics. Tére @f the paper is as follows. First the mathematical
model is discussed. This is followed by a description of theputational method and verification of the stated
method. The model is used to predict the viscous analog opéni@d-doubling phenomena predicted in the
inviscid limit [15[17[18]. The convergence of the periogidtling bifurcation points is shown to be in agreement
with the general theory of Feigenbaum,[19, 20] and diffns®seen to have a generally stabilizing effect on
detonation dynamics.

2 Mathematical Model

The model equations adopted here are the one-dimensiosiglatty compressible reactive Navier-Stokes equa-
tions with one-step kinetics:
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where the independent variables are timend the spatial coordinate, In Egs. [AE4),p is the mass density,
the particle velocityP the pressurey the diffusive viscous stress,the specific internal energy? the diffusive
heat flux,\ the reaction progress variablg; the diffusive mass flux, andthe reaction rate. The equations were
transformed to a frame of reference moving at a constantitgld. The constitutive relations chosen for mass,
momentum, and energy diffusion are
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whereD is the mass diffusion coefficient,the dynamic viscosity; the thermal conductivity]” the temperature,
andq the heat release. A calorically perfect ideal gas modelaptatl. The reaction rateis given by:

r= H(P—P)a(l—X) e 77, ®)

Herea is the reaction ratef the activation energy, anH (P — P;) is a Heaviside function which suppresses
reaction whernP < Py, whereP; is a selected pressure. The ambient pressure and densiakareto be?, and
Do, respectively.

3 Computational Method and Verification

A temporally explicit point-wise method of lines approashuised, which allows separate temporal and spatial
discretizations. It also allows for the easy inclusion afiree terms. The advective terms were calculated using a
combination of a fifth order WENO scheme and Lax-Friedridssmrtization[[21]; the diffusive terms are treated
with sixth order central differences. Temporal integmt®done using a third order Runge-Kutta scheme.

The exercise of demonstrating the harmony of the discréteiso with the foundational mathematics is known
as verification[[2R]. The method of manufactured solutid@®] vas used to verify the code. In this method, a
solution form is assumed, and special source terms are addee governing equations in such a fashion that the
assumed solution satisfies the modified equations. A perfodin for the solution was assumed

p(z,t) = ay + by cos[n(x —t)], 9)
u(z,t) = ag + by cos [r(x —t)], (10)
p(z,t) = az + by cos [r(z +t)], (11)
Az, t) = aq + bycos [m(x + 1)), (12)

with a domainz € [—1, 1]. The coefficients are takento g = as = a3 = a4 = 1 andby = b3 = by =
1/10, b4 = 1. The initial conditions are those given by Eq9[(9-12) at 0. Figure[1 shows fifth order asymptotic
convergence of the error of the discrete approximation esgiatial grid is refined. The ordinate is the sum of
all variables’L; errors normalized by the maximum value of the variable. hased that for convergence of
the reactive Navier-Stokes equations, the presence of #awiside step function in the reaction rate term may
preclude a full fifth order convergence rate.

4 Results

Next simulations of the reactive Navier-Stokes equatiosagpaesented. All calculations were performed in a sin-
gle processor environment on an AMD! GHz processor witts12 kB cache. The simulation is initialized with
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the inviscid Zel'dovich-von Neumann-Doring (ZND) solotti in a moving frame traveling at the CJ speed. Each
simulation is integrated in time to determine the long tirebdvior. For a calculation @5 us the computational
time required was two days. Some calculations took as lomjresdays for full relaxation. By selecting the dif-
fusion coefficientD = 10~ m? /s, thermal conductivityk = 10~ W/m/K, and viscosityy = 10~% Ns/m?

the Lewis,Le, Prandtl,Pr, and SchmidtSc numbers evaluated at the ambient dengity= 1 kg/m?, are unity.

In the inviscid detonation, the activation energy conttbésstability of the system; the rate constant merely intro-
duces a length/time scale into the system, the half realgiwgth, L, /», (the distance between the inviscid shock
and the location at which = 1/2). If L, , is fixed, the effect of diffusion on the system can be studi&fth
these parameters, all of the diffusion length scales arsatre and is denoted ly, = 10~7 m. The parameters

in the governing equations afeé, = 101325 Pa, P, = 200000 Pa, p, = 1 kg/m3, ¢ = 5066250 m?/s?,

v = 6/5, andE € [2533125, 3232400] m?/s2. To compare directly with previous work in the inviscid limnihe
activation energies will be presented in dimensionlessifd? = E/ (1.01325 x 10° m?/s?), thusE € [25,32].
Unless otherwise stated, the calculations presented ager&dio ofL,, /L, = 1/10.

4.1 Effect of diffusion on the bifurcation behavior

In the inviscid case, linear stability analysis by1[13] rakesl that forE < 25.26, the steady ZND wave is lin-
early stable and is otherwise linearly unstable. This Btaliioundary is labeled a&),. The stability limit was
numerically found for the inviscid case, By [18], B = 25.265 4+ 0.005, which is in excellent agreement with
the prediction of linear stability analysis. For a case &bt inviscid stability limit, = 26.647, the viscous
ZND detonation predicted by steady theory is stable. A gkfidimit cycle is realized abov&, =~ 27.1404, for
the viscous case.

A period-doubling behavior and transition to chaos for ahkt detonations are found to be remarkably similar
to that predicted by the simple logistic map[24], 25]. Thevation energy at which the behavior switches from
a period2”~! to a period2™ solution is denoted ag,,, for n > 1. As predicted by[[15, 17,718] transition to a
period-2 oscillation occurs df; =~ 27.2 in the inviscid case. For the viscous case, this initial gedoubling
effect is delayed td”; ~ 29.3116. Bifurcation points for the inviscid and viscous models bsted in Tabldl
along with approximations for Feigenbaum’s constagt,:

E,—E,_
0o = lim §,, = lim —n o ond

n—00 n—oo Bpiq — B,

(13)

Table 1: Numerically determined bifurcation points forisaid and viscous detonation, and approximations to
Feigenbaum’s constant

Inviscid Inviscid Viscous Viscous
n E, On E, On
0 25.2650 - 27.1404 -
1 27.1875 3.86 29.3116 3.793
2 27.6850 4.26 29.8840 4.639
3 27.8017 4.66 30.0074 4.657
4 27.82675 - 30.0339 -

A bifurcation diagram was constructed by sampling over 3@@1ts with E' € [25, 32]. The late time behavior of
relative maxima inP versus activation energy is shown in Higj. 2(b). It showsgmkdoubling bifurcations up to
roughly £, =~ 30.0411. It is likely that in the dense portions of the bifurcationgliam that the system is in the
chaotic regime. As in the inviscid limit, within this chaotiegime there exist pockets of order, with periods of
5, 3, and6. In the diffusive case there is no true discontinuity, thuiesghock speed cannot be predicted as in the
inviscid limit, shown in Fig[R(a).

4.2 Effect of diminishing diffusion

By increasing the reaction length scalg, ., the relative effect of diffusion decreases. Fidure 3 shavigtions
for £ = 27.6339, for the ratiosL,, / L, /, of (a) 1/5, (b) 1/10, and (c)1/50. The system undergoes transition from
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a stable detonation to a period-1 limit cycle, to a period¥ticycle. The amplitude of the pulsations increase
with (a) relaxing to aP =~ 4.213 M Pa, (b) having a relative maximum a?,,,,. =~ 4.799 M Pa and (c) having
relative maxima ofP,,,,, ~ 5.578 M Pa and P, =~ 5.895 M Pa. The pulsation frequency also decrease with
decreasing diffusion. Inthe,, /L, , = 1/50 case the period-2 behavior of the inviscid case has beewaesh

5 Conclusions

Investigation of the one-step kinetic model of one-dimenal unsteady detonation with mass, momentum, and
energy diffusion has shown that the dynamics are signifigénftuenced in the region of instability or near insta-
bility relative to its inviscid counterpart. As in the ineisl limit, bifurcation and transition to chaos is predicted
and shows similarities to the logistic map. For physicalytivated reaction and diffusion length scales not unlike
those for H,-air detonations, the addition of diffusion delays the emdenstability. As physical diffusion is
reduced, the behavior of the system trends towards thecidMigit. If the dynamics of unstable and marginally
stable denotations are to be captured, physical diffusemts to be included and needs to dominate numerical
diffusion. It is likely that these results will extend to diééd kinetic systems and that detonation cell pattern
formation will be influenced by the magnitude of the physitiéusion [9].
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Figure 1: The normalized, error versus\z for a manufactured solution.
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Figure 2: Comparison of numerically generated bifurcatimmgrams: (a) inviscid detonation from Henrietial .,
(b) viscous detonation with,, /L, /, = 1/10.
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Figure 3: P versust for viscous detonation witly = 27.6339 and (a)L,,/ L/, = 1/5, stable, (b)L,,/L1/2 =
1/10, period-1, (c)L,./ Ly /o = 1/50, period-2.
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