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1 Introduction

It is a common notion in detonation theory that the effects ofdiffusion can be neglected in comparison to those
of reaction and advection [1]- [8]. However, there are indications that such an assumption can be problematic.
For example, using grid sizes around10−6 m for their three-dimensional simulations of unsteadyH2-air deto-
nations, Tsuboiet al. [8] report wave dynamics that show strong sensitivity to thefineness of the grid. While
apparent convergence of some structures was reported, theyalso note with regard to some particulars of the det-
onation structure “The present results cannot resolve suchcross-hatchings in the ribbon because of a lack of grid
resolution.” The presence of reaction dynamics and steep gradients at micron length scales suggest that physical
diffusion has an important role to play. Indeed, Powers [9] showed that two-dimensional detonation patterns are
strongly grid-dependent for simulations of reactive Eulerequations, but relax to a grid-independent dissipative
structure for a comparable reactive Navier-Stokes calculation. This suggests numerical diffusion is playing a sig-
nificant role in the inviscid limit and that one should consider the introduction of physical diffusion to properly
capture the dynamics.

Consideration of the reaction-advection length scales admitted by an inviscid detonation explains why such fine
scales are necessary. Powers and Paolucci [10] performed a spatial eigenvalue analysis on a detailed kineticH2-air
model and showed for inviscid detonations that the length scales for a steady Chapman-Jouguet (CJ) detonation
can span five orders of magnitude near equilibrium, with the smallest length scale for an ambient mixture at
atmospheric pressure being10−7 m and the largest being10−2 m; away from equilibrium the breadth of scales
can be even larger. These fine reaction scales are a manifestation of an averaged representation of the molecular
collision model in which the fundamental length scale is themean free path [11]. The choice of a one-step kinetic
model induces a single reaction scale, in contrast to the multiple reaction scales of detailed kinetic models. This
allows for the effects of the interplay between chemistry and transport phenomena on detonations be more easily
studied. Such a model has been studied extensively; the stability and non-linear dynamics are well understood in
the inviscid limit [12]- [18]. The goal of this paper is to predict the effects of diffusion on the long-time dynamics
of a detonation described by simple one-step kinetics. The plan of the paper is as follows. First the mathematical
model is discussed. This is followed by a description of the computational method and verification of the stated
method. The model is used to predict the viscous analog of theperiod-doubling phenomena predicted in the
inviscid limit [15,17,18]. The convergence of the period-doubling bifurcation points is shown to be in agreement
with the general theory of Feigenbaum, [19, 20] and diffusion is seen to have a generally stabilizing effect on
detonation dynamics.

2 Mathematical Model

The model equations adopted here are the one-dimensional unsteady compressible reactive Navier-Stokes equa-
tions with one-step kinetics:
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where the independent variables are time,t, and the spatial coordinate,x. In Eqs. (1-4),ρ is the mass density,u
the particle velocity,P the pressure,τ the diffusive viscous stress,e the specific internal energy,jq the diffusive
heat flux,λ the reaction progress variable,jmλ the diffusive mass flux, andr the reaction rate. The equations were
transformed to a frame of reference moving at a constant velocity, D. The constitutive relations chosen for mass,
momentum, and energy diffusion are

jmλ = −ρD
∂λ

∂x
, (5)

τ =
4

3
µ
∂u

∂x
, (6)

jq = −k
∂T

∂x
+ ρDq

∂λ

∂x
, (7)

whereD is the mass diffusion coefficient,µ the dynamic viscosity,k the thermal conductivity,T the temperature,
andq the heat release. A calorically perfect ideal gas model is adopted. The reaction rater is given by:

r = H(P − Ps)a (1− λ) e−
Ẽ

P/ρ . (8)

Herea is the reaction rate,̃E the activation energy, andH(P − Ps) is a Heaviside function which suppresses
reaction whenP < Ps, wherePs is a selected pressure. The ambient pressure and density aretaken to bePo and
ρo, respectively.

3 Computational Method and Verification

A temporally explicit point-wise method of lines approach is used, which allows separate temporal and spatial
discretizations. It also allows for the easy inclusion of source terms. The advective terms were calculated using a
combination of a fifth order WENO scheme and Lax-Friedrichs discretization [21]; the diffusive terms are treated
with sixth order central differences. Temporal integration is done using a third order Runge-Kutta scheme.

The exercise of demonstrating the harmony of the discrete solution with the foundational mathematics is known
as verification [22]. The method of manufactured solutions [23] was used to verify the code. In this method, a
solution form is assumed, and special source terms are addedto the governing equations in such a fashion that the
assumed solution satisfies the modified equations. A periodic form for the solution was assumed

ρ (x, t) = a1 + b1 cos [π(x − t)] , (9)

u (x, t) = a2 + b2 cos [π(x − t)] , (10)

p (x, t) = a3 + b3 cos [π(x + t)] , (11)

λ (x, t) = a4 + b4 cos [π(x + t)] , (12)

with a domainx ∈ [−1, 1]. The coefficients are taken to bea1 = a2 = a3 = a4 = 1 andb2 = b3 = b4 =
1/10, b4 = 1. The initial conditions are those given by Eqs. (9-12) att = 0. Figure 1 shows fifth order asymptotic
convergence of the error of the discrete approximation as the spatial grid is refined. The ordinate is the sum of
all variables’L1 errors normalized by the maximum value of the variable. It isnoted that for convergence of
the reactive Navier-Stokes equations, the presence of the Heaviside step function in the reaction rate term may
preclude a full fifth order convergence rate.

4 Results

Next simulations of the reactive Navier-Stokes equations are presented. All calculations were performed in a sin-
gle processor environment on an AMD2.4 GHz processor with512 kB cache. The simulation is initialized with
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the inviscid Zel’dovich-von Neumann-Döring (ZND) solution in a moving frame traveling at the CJ speed. Each
simulation is integrated in time to determine the long time behavior. For a calculation of2.5 µs the computational
time required was two days. Some calculations took as long asnine days for full relaxation. By selecting the dif-
fusion coefficient,D = 10−4 m2/s, thermal conductivity,k = 10−1 W/m/K, and viscosity,µ = 10−4 Ns/m2

the Lewis,Le, Prandtl,Pr, and Schmidt,Sc numbers evaluated at the ambient density,ρo = 1 kg/m3, are unity.
In the inviscid detonation, the activation energy controlsthe stability of the system; the rate constant merely intro-
duces a length/time scale into the system, the half reactionlength,L1/2, (the distance between the inviscid shock
and the location at whichλ = 1/2). If L1/2 is fixed, the effect of diffusion on the system can be studied.With
these parameters, all of the diffusion length scales are thesame and is denoted byLµ = 10−7 m. The parameters
in the governing equations arePo = 101325 Pa, Ps = 200000 Pa, ρo = 1 kg/m3, q = 5066250 m2/s2,
γ = 6/5, andẼ ∈ [2533125, 3232400]m2/s2. To compare directly with previous work in the inviscid limit, the
activation energies will be presented in dimensionless form,E = Ẽ/

(

1.01325× 105 m2/s2
)

, thusE ∈ [25, 32].
Unless otherwise stated, the calculations presented are for a ratio ofLµ/L1/2 = 1/10.

4.1 Effect of diffusion on the bifurcation behavior

In the inviscid case, linear stability analysis by [13] revealed that forE < 25.26, the steady ZND wave is lin-
early stable and is otherwise linearly unstable. This stability boundary is labeled asE0. The stability limit was
numerically found for the inviscid case, by [18], atE0 = 25.265± 0.005, which is in excellent agreement with
the prediction of linear stability analysis. For a case above the inviscid stability limit,E = 26.647, the viscous
ZND detonation predicted by steady theory is stable. A period-1 limit cycle is realized aboveE0 ≈ 27.1404, for
the viscous case.

A period-doubling behavior and transition to chaos for unstable detonations are found to be remarkably similar
to that predicted by the simple logistic map [24, 25]. The activation energy at which the behavior switches from
a period-2n−1 to a period-2n solution is denoted asEn, for n ≥ 1. As predicted by [15, 17, 18] transition to a
period-2 oscillation occurs atE1 ≈ 27.2 in the inviscid case. For the viscous case, this initial period-doubling
effect is delayed toE1 ≈ 29.3116. Bifurcation points for the inviscid and viscous models arelisted in Table 1
along with approximations for Feigenbaum’s constant,δ∞ :

δ∞ = lim
n→∞

δn = lim
n→∞

En − En−1

En+1 − En
. (13)

Table 1: Numerically determined bifurcation points for inviscid and viscous detonation, and approximations to
Feigenbaum’s constant

Inviscid Inviscid Viscous Viscous
n En δn En δn
0 25.2650 - 27.1404 -
1 27.1875 3.86 29.3116 3.793
2 27.6850 4.26 29.8840 4.639
3 27.8017 4.66 30.0074 4.657
4 27.82675 - 30.0339 -

A bifurcation diagram was constructed by sampling over 300 points withE ∈ [25, 32]. The late time behavior of
relative maxima inP versus activation energy is shown in Fig. 2(b). It shows period-doubling bifurcations up to
roughlyE∞ ≈ 30.0411. It is likely that in the dense portions of the bifurcation diagram that the system is in the
chaotic regime. As in the inviscid limit, within this chaotic regime there exist pockets of order, with periods of
5, 3, and6. In the diffusive case there is no true discontinuity, thus the shock speed cannot be predicted as in the
inviscid limit, shown in Fig. 2(a).

4.2 Effect of diminishing diffusion

By increasing the reaction length scale,L1/2, the relative effect of diffusion decreases. Figure 3 shows solutions
for E = 27.6339, for the ratiosLµ/L1/2 of (a)1/5, (b) 1/10, and (c)1/50. The system undergoes transition from
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a stable detonation to a period-1 limit cycle, to a period-2 limit cycle. The amplitude of the pulsations increase
with (a) relaxing to aP ≈ 4.213 MPa, (b) having a relative maximum ofPmax ≈ 4.799 MPa and (c) having
relative maxima ofPmax ≈ 5.578 MPa andPmax ≈ 5.895 MPa. The pulsation frequency also decrease with
decreasing diffusion. In theLµ/L1/2 = 1/50 case the period-2 behavior of the inviscid case has been recovered.

5 Conclusions

Investigation of the one-step kinetic model of one-dimensional unsteady detonation with mass, momentum, and
energy diffusion has shown that the dynamics are significantly influenced in the region of instability or near insta-
bility relative to its inviscid counterpart. As in the inviscid limit, bifurcation and transition to chaos is predicted
and shows similarities to the logistic map. For physically motivated reaction and diffusion length scales not unlike
those forH2-air detonations, the addition of diffusion delays the onset of instability. As physical diffusion is
reduced, the behavior of the system trends towards the inviscid limit. If the dynamics of unstable and marginally
stable denotations are to be captured, physical diffusion needs to be included and needs to dominate numerical
diffusion. It is likely that these results will extend to detailed kinetic systems and that detonation cell pattern
formation will be influenced by the magnitude of the physicaldiffusion [9].
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Figure 1: The normalizedL1 error versus∆x for a manufactured solution.
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Figure 2: Comparison of numerically generated bifurcationdiagrams: (a) inviscid detonation from Henricket al.,
(b) viscous detonation withLµ/L1/2 = 1/10.
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Figure 3: P versust for viscous detonation withE = 27.6339 and (a)Lµ/L1/2 = 1/5, stable, (b)Lµ/L1/2 =
1/10, period-1, (c)Lµ/L1/2 = 1/50, period-2.
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