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1 Introduction

The shattering of drops is a key process in heterogeneous detonation phenomenon. It sets a sizes, quan-
tity and moments of tearing-off of stripped daughter droplets. Just these parameters control following
motion and evaporation of a lot of finest droplets, which are gone with a gas flow into wake of parent
drop and produce a two-phase combustible spray there. To determine kinetic regularities of shattering
experimentally is too complex problem, because the event picture is shadowed by dense mist of finest
particles and their vapors. So, the regularities must be found by means of theoretical modelling of the
process. To construct a theory of detonation in gas-droplets systems one must build first of all a model
of shattering process which would be able to give droplets sizes and moments of their tearing-off in or-
der to determine quantitatively further processes of stripped mass motion, evaporation and combustible
mixture formation. Thus, distribution function of quantity of daughter droplets by sizes and its evolution
in space and time must be the basic element of mathematical model of heterogeneous detonation wave.

An investigation of local instability of drop surface with due regard to changing of velocity profiles
across conjugated boundary layers, as well as to changing of boundary layers thicknesses and velocities
along drop surface [1] revealed for weak-viscosity liquids a new type of hydrodynamic instability –
so-called ”gradient instability”. As distinct from Kelvine – Helmholtz type, which is grounded on pres-
sure difference action, mechanism of gradient instability consists in action of large gradient of inertia
forces, caused by huge velocity gradient (105 − 107sec−1), in curvilinear flow inside perturbed liquid
boundary layer. The mechanism of gradient instability explains the ”stripping” mode of shattering as
quasi-continuous dispersing and predicts all the main features of event in speedy flows [2]. Its applica-
tion permits below to obtain law of drop mass historym(t) (ablation law) and distribution function of
daughter droplets, stripped to any time moment.

2 Equation for daughter droplets quantity

Dependencies of wavenumber∆m and incrementIm(zm) of dominant unstable disturbance from ”sur-
face” Webber numberWes = ρgV

2
s δl/σ show [2], that there exists a critical pointϕcr(t) on drop surface,
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which divides it on stableϕ < ϕcr and unstableϕ > ϕcr parts. Assuming the potential streamlining of
drop and taking gas boundary layer thickness in the form of Rangerδg(ϕ, t) = 2.2R(t)Re−0.5(t)Ψ(ϕ),
Ψ(ϕ) ≡ ((6ϕ−4 sin 2ϕ+0.5 sin 4ϕ)/ sin5 ϕ)

0.5
, using continuity of viscous tangential tension on drop

surface as conjugation condition, we obtain condition for gradient instability to exist on drop surface:

2.475 α

(1 + αξ)2

√
R̃(τ) (1−W (τ))3 sin2 ϕ Ψ(ϕ) GI > 0.004, (1)

whereGI = We∞/Re0.5
∞ is criterion of gradient instability,̃R = R/R0 andW = w/V∞ are dimen-

sionless drop radius and velocity,τ = t/tch, tch = 2R0/
√

αV∞, V∞ – velocity of gas flow,α = ρ∞/ρl,
µ = µ∞/µl, ξ = logα (α µ)1/3 is parameter of mutual viscous engagement of media in boundary lay-
ers. Equality in (1) defines the value ofϕcr; atα GI > 5.25 · 10− 4 we haveϕcr < π/2 and part of drop
surface adjacent to edge is unstable, providing a possibility of dispersing. The values ofϕcr are small
enough in detonation:ϕcr ¿ π, so, most part of drop surface generates a mist of droplets. Condition
GI > ' 0.3 was first obtained empirically by Rabin et al. as condition of stripping breakup mode.

Figure 1:Scheme of dispersing on the elementary ground of drop surface

Due to axisymmetric character of streamlining of drop the quantity of unstable waves on any ground
∆l = R(t)∆ϕ of surface (fig. 1) equals to quantity of torus, that are torn from spherical belt defined by
this ground. Let’s assume that radius of torn droplet is proportional to the length of dominant unstable
waver = krλm, kr < 0.25, then, dividing volume of torus, torn in time intervalti = ktIm−1(zm),
kt ≥ 1, by volume of droplet, we obtain equation for droplets quantity∆n torn from the ground:

∆n(ϕ, τ) = B2

√
R̃(τ)(1−W (τ))5

sin2 ϕ

Ψ3(ϕ)
∆ϕ ∆τ, B2 =

0.30∆2
m(Wes)Im(z(Wes))Re1.5

∞
πkrkt(1 + αξ)

(
µ2

α

) 7
6

;

(2)

r̃(ϕ, τ) = B1T (τ)Ψ(ϕ), r̃ =
r

R0
, T (τ) =

(
R̃(τ)

(1−W (τ))

)0.5

, B1 =
3.11πkr

∆m(Wes)Re0.5
∞

(
α

µ2

) 1
3

. (3)
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3 Equation of parent drop ablation

Dividing now the stripped mass by period of its strippingti, we obtain the rate of mass efflux from
this ground, and by integrating along windward surface fromϕcr to π/2, with accounting of weak
dependence of ratioIm(zm)/∆m from Wes, we obtain [3] the differential equation of drop ablation

dM

dτ
= −AR̃2(τ) (1−W (τ))

(
1− 2ϕ cr(τ)

π
+

sin 2ϕ cr(τ)
π

)
, A =

0.41π3k2
r

kt(1 + αξ)

(
µ2

α

) 1
6

, (4)

whereM = m/m0. To determineW (τ) andϕcr(τ) it requires simultaneous integration of drop motion
equation and eq. (1). But forϕcr ¿ π and spherical dropM(τ) = R̃3(τ) we obtain the ablation law

M(τ) =
(
1−A

(
τ − α0.5Xd(τ)

)
/3

)3
, R̃(τ) = 1−A

(
τ − α0.5Xd(τ)

)
/3, (5)

immediately, which indicates evidently the direct influence of law of drop motionXd = Xd(τ) on its
ablation law. Let’s use now empirical data of Reinecke, Waldman [6] and write down law of drop motion
in the form

√
αXd(τ) = τ − (1− exp(−Hτ))/H, H = 2

√
α, whence

W = 1− exp(−Hτ), M = R̃3 = (1− h (1− exp(−Hτ)))3 , (6)

where parameterh = A/3H reflects the relation between two governing factors of shattering: the rate
of mass efflux (∼ A) and rate of relaxational reducing of relative velocity of gas flow and parent drop
(∼ H). As (6) shows, whenh > 1 drop is wholly shattered to time momentτb = H−1 ln(h/(h − 1));
whenh < 1 dispersion terminates before the whole drop breaks because latter factor leads to quick
reducing of main reason of dispersing – relative velocity1−W ; remnant has radius̃Rr = 1− h and it
may be shattered by another mechanism, for example, by Rayleigh – Taylor instability [2]. The analysis
shows, that values ofh for detonative systems are slightly higher thenh = 1, valuesh ≥ 4 correspond
to ablation of liquid meteoroids and caseh < 1 – to incomplete shattering of viscous drops. Comparison
of ablation law (6) with experimental data [4] indicates their good enough agreement [3].

4 Distribution function in the case whenh = 1

To obtain distribution functionfn(r̃, τ) = ∆n(r̃, τ)/∆r̃ we need to integrate (2) along each line
r̃(ϕ, τ) = const inside strip∆r̃ = const; sets of these lines are different forh > 1 andh < 1 as
fig. 2 shows. Dispersing process begins in base diapasonr̃0l < r̃ < r̃0r, which corresponds to initial
intervalϕcr(0) < ϕ < π/2 and continuous in domainA. As equation (3) shows, diapason of droplets
sizes is then widened in domainB by fine fractions forh > 1 cases and coarse fractions forh < 1 cases.

In caseh = 1 (6) givesR̃ = exp(−Hτ) = 1 − W (τ), then it follows from (3) thatT ≡ 1, so, the
lines r̃(ϕ, τ) = const are all parallel to time axis. It appears in the remarkable caseh = 1 of equality
of ablation rate to rate of reducing of relative velocity, that for each fixed ground on drop surface the
reducing of stripped droplets size due to reducing in time of parent drop size is strictly compensated by
its growth due to reducing of relative velocity. Thus, size of droplets that torn from fixed ground∆ϕ
remains unchanged and it can be determined atτ = 0. There is nothing to do but to sum the quantity
∆n in time. EliminatingΨ(ϕ) in (2) with a help of (3) and substituting∆ϕ by ∆ϕ = ∆r̃/B1Ψ′, we
obtain:

∆n(r̃, τ)
∆r̃

= fn(r̃, τ) =
1− exp(−3Hτ)

A r̃2

B3
1B2 sin3 ϕ0(r̃)

(8B2
1 − 2.5 r̃2 cosϕ0(r̃))

, r̃0l < r̃ < r̃0r. (7)
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Formula (7) permits to calculate intermediate distribution of daughter droplets torn to any time moment
τ < τb. Calculated values of∆n = fn∆r̃ at h = 1.00 are given on fig. 3. The modal radius of

Figure 2:Set of lines̃r(ϕ, τ) = const (black, solid). Left:h = 1.5. Right: h = 0.5. Line 1 – left bound
ϕ l = ϕ cr(τ) of domain of dispersing; line2 – border of domainsA andB: r̃ = r̃l on the left and̃r = r̃r

on the right

distribution r̃ mod can be easily obtained from (7); it givesr̃ mod ≈ 2B1. As well, the approximated
formula for total quantity of stripped dropletsN =

∑
∆r

∆n may be found in the form:

N ≈ 0.047 B2A
−1 (1.45− 0.76 ϕl0 + 0.25 sin(3.05ϕl0)) . (8)

5 Distribution function in general case

After eliminatingΨ(ϕ), substituting∆τ = ∆r̃/(B1Ṫ (τ)Ψ(ϕ) ) and integrating (2) along̃r(ϕ, τ) =
const from ϕ∗ = ϕ 0 = ϕ(0) to ϕ∗ = π/2 (see fig. 2), we obtain the equation for distribution function

∆n = fn∆r̃ = 2
B3

1B2

(h− 1)Hr̃4

π/2∫

ϕ 0

R̃3(τ(ϕ)) (1−W (τ(ϕ))) sin2 ϕdϕ ∆r̃, (9)

whereτ(ϕ) is determined for each fixed̃r from (3). Equation (9) points out the influence of laws of
ablation and motion of drop on distribution function. To evaluate the curvilinear integral is a knotty
problem in view ofτ(ϕ) kind, so, one possible way is to approximate path of integration by straight line
τ − τ∗ = (ϕ− ϕ∗)/aef with some effective slopeaef(r̃; h). So we obtain from (9) using (6)

∆n(r̃) = fn(r̃)∆r̃ =
B3

1B2

(h− 1)r̃4

aef(r̃)
H2

4∑

i=1

Ai [Φi ∗(r̃)− Φ∗i (r̃)] ∆r̃, (10)
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whereΦi(r̃) = Ci(r̃)
(
sin2 ϕ(r̃) + sin2 (ϕ(r̃) + θi(r̃))

)
andC(r̃) = (h − 1)/

(
h− (r̃/(B1Ψ(ϕ)))2

)

must be calculated on lowerϕ = ϕ∗(r̃) and upperϕ = ϕ∗(r̃) limits of integration;Ai = 0.25Ci
4h

i−1(1−
h)4−i, θi = π − γi at h < 1 andθi = γi at h > 1, γi = arc sin((iH/2aef)2 + 1)−0.5. Values ofϕ∗(r̃)
andϕ∗(r̃) are to be found from equations of boundaries of dispersion regionϕ l = ϕ cr(τ), ϕr = π/2
(see fig. 2) and of lines̃r(ϕ, τ) = const. Analysis of behavior of these lines permitted to find expression
for aef , which is valid in wide diapason ofh. As quantity of stripped droplets decreases with time (see
(2)), effective slope must be fitted with account of most influence of its initial values and less influence
of its mean valuesamv = (ϕ∗−ϕ∗)/(τ∗− τ∗). Besides that, it is necessary to set natural demand to get
in the limit h → 1 the exact expression (7), obtained in caseh = 1. Eventually we came to following
expressions foraef in domainsA andB:

aef A =

(
h− 1 + h−2 + k(h) |h− 1|0.5 h−1

)
amva∗

(h− 1)a∗ + amvh−2 + (amv + a∗) |h− 1|0.5 h−1
, aef B =

(
k1h + k2h

−3
)
amva∗

ha∗ + amvh−3
(11)

with k(h) = 0.93(2h− 1)h−1, k1 = 1.13, k2 = 0.87 for h > 1 andk(h) = 1.33h−0.5, k1 = 0.80, k2 =
1.13 for h < 1. The calculated by formulae (7), (10)–(11) distributions∆n(r̃) are shown on fig. 3.

Figure 3:Distributions∆n(r̃) at varioush,Re∞

6 Peculiarities of droplets distributions

The most parts of mass and quantity of daughter droplets at anyh are generated in a base diapason
r̃0l < r̃ < r̃0r (domain A). Ath > 1 function∆n(r̃) has ascending and descending branches, which
make maximum at̃rmod. It appears due to small rate of production of droplets to the left ofr̃mod,
while to the right – small is the period of existence of conditions for such a production (fig. 2). The
shape of curve∆n(r̃) depends on values ofh, as illustrated by fig. 3, while bench-mark values of
r̃0l, r̃0r, r̃ mod , ∆n(r̃ mod ) depend onB1, B2. In accordance with (2), (3) the sizes of totality of
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daughter droplets are defined by parameterB1 ∼ Re−1/2
∞ α1/3µ−2/3, which plays the role of scale of

sizes; as well,B2 ∼ Re3/2
∞ α−7/6µ7/3 is responsible for quantity scale. Ash ∼ α−2/3µ1/3 growth, the

part of fine fractions widens and ath ' 2 it becomes comparable with that of the coarse one (fig. 3).

7 Distribution function for theoretical law of drop motion

Distribution function (10) was derived on a base of empirical law of drop motion (6), well enough fitted
quantitatively. To eliminate arbitrary influence from the law’s form, the procedure of obtainingfn(r̃)
was undertaken in the similar way, but it was grounded now on simultaneous integrating of differential
equation of drop motion and equation of ablation (4), which for naturalη = 3h/(h− 1) gives

R̃(τ) = Dh, W (τ) = 1−D, fn(r̃) =
3hB3

1B2

(h− 1)Ar̃4

[
1

c(η + 1)
Pη+1(ϕ)− Fη(ϕ)

]ϕ∗

ϕ∗
(12)

whereFη(ϕ) = sin 2ϕ
2

E(η/2)∑
k=0

(−0.25)k P
(2k)
η (ϕ)+ cos 2ϕ

4

E((η+1)/2)∑
k=1

(−0.25)k−1 P
(2k−1)
η (ϕ), Pη(ϕ) =

(b + cϕ)η, P
(k)
η – its k-th derivative,b = 1 − (h − 1)C(τ∗ − ϕ∗/aef), c = −(h − 1)C/aef , D =

(1− (h− 1)Cτ)1/(h−1), C = 0.75
√

α Cd. To naturalη > 3 corresponds series of discreet values of
h: 1 < h = η/(η − 3) ≤ 4. For integerη < 0 we obtain series ofh values, which belongs to interval
0.25 ≤ h < 1 of incomplete regimes of shattering; in this casefn expresses inSi(ϕ), Ci(ϕ). Named set
of η values covers compactly enough all the practically important diapason ofh. The distributions were
calculated forh = 1.5; 2.0; 4.0 according to relations (11)–(12). Comparison showed weak influence
on∆n(r̃) of the two methods – empirical and theoretical – of determination of drop motion law.

8 Conclusions

Model of shattering which is based on mechanism of action of gradient instability provides approximated
analytical relations of process: the ablation law and the distribution function of stripped droplets by
sizes are obtained. It makes possible to describe quantitatively dynamics of further acceleration and
evaporation of spray of daughter droplets and formation of inflammable mixture in wake of shattering
drop, and may serve therefore as a ground for model of heterogeneous combustion in detonation wave.
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