Extinguishment of Cup Burner Flames of Propane and the FAA Aerosol Can Simulator Fuel by CF$_3$Br and C$_2$HF$_5$

Fumiaki Takahashi1
Case Western Reserve University, Cleveland, OH 44106, USA

Viswanath R. Katta
Innovative Scientific Solutions, Inc., Dayton, OH 45440, USA

Gregory T. Linteris
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Harsha Chelliah
University of Virginia, Charlottesville, VA 22904, USA

Oliver C. Meier
The Boeing Company, Seattle WA 98124, USA

Abstract

The fire suppressant CF$_3$Br has been banned for most applications except critical applications such as the suppression of cargo-bay fires in aircraft. Recently, the halon replacement agents, including C$_2$HF$_5$ (pentafluoroethane, HFC-125), have been evaluated in a mandated Federal Aviation Administration (FAA) test, in which a simulated explosion of an aerosol can, caused by a fire, must be suppressed by the agent. Unfortunately, unlike CF$_3$Br, the other agents, when added at approximately one half their inerting concentrations, created a higher over-pressure in the test chamber and thus failed the test. Similar combustion enhancement has been described in other experiments for certain conditions; however, explanation of the phenomena is lacking. In this work, calculations have been performed for co-flow diffusion flames of propane and the FAA Aerosol Can Simulator fuel mixture (mole fractions: propane, 0.159; ethanol, 0.454; and water, 0.387), in the cup-burner configuration, with added CF$_3$Br or C$_2$HF$_5$. The time-dependent, two-dimensional numerical code, which includes a detailed kinetic model (177 species and 2986 reactions) and diffusive transport, has predicted the minimum extinguishing concentration of each agent in normal earth and zero gravity.

Acknowledgments

This work was supported by The Boeing Company.

1 Corresponding author. E-mail: fumi3g@gmail.com.