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1 Introduction 
We have experimentally studied self-sustained oblique detonation waves around hyper velocity 
projectiles as a part of the application of an oblique detonation wave engine. In previous papers [1-4], 
we used optical observation to clarify the fluid-dynamic structure of self-sustained oblique detonation 
waves stabilized around cone-nosed projectiles and the criticality for detonation waves. 
 Higgins [5] and Higgins and Bruckner [6] studied the criticality of detonation initiation by 
projectiles using pressure history inside a tube. Lee [7] proposed a theory for initiation criticality by 
using a cylindrical, strong blast-wave analogy. Many other researchers have studied the oblique 
detonation phenomena in their reports [8-14]. In the present paper, we discuss the steadiness of the 
oblique detonation waves around the projectile by using a high speed camera. 

2 Experimental set up and conditions 

The experimental set up is composed of four elements: (1) a two-stage light-gas gun to launch a hyper 
velocity projectile, (2) a combustion chamber which is filled with containing a detonable gas, (3) 
shadowgraph visualization system, and (4) an evacuation chamber for releasing the projectile and 
burned gas. The schematic diagram of the experimental arrangement (top view) is shown in Fig. 1. We 
have used a high speed camera (HPV-1, SHIMADZU) in order to observe of an oblique detonation 
wave. The inter-frame time of this camera is 1 μs with a spatial resolution of 312 u  260 pixels. The 
camera was trigged by a He-Ne laser cutting signal. For visualization of an oblique detonation wave, 
shadowgraph was used. Table 1 shows each experimental condition. A projectile diameter is 4.76 mm. 
Acetylene-oxygen-krypton mixture (2C2H2+5O2+20.5Kr) was used as detonable gas. The initial 
pressures p0 and temperatures T0 of detonable gas were shown in Table 1.  

3 Results and discussion 
The oblique detonation structure around hypersonic projectiles is defined as Fig. 2 [2]. Figure 3 shows 
multi-flame photograph of the stabilized oblique detonation (Shot No. 1). 
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 Projectile velocities Vp are 1.5 and 2.3 km/s. The detonation wave propagating velocity VW is 
defined as VW=VpsinθW, where θw is detonation wave angle. Figure 4 shows that VW is 1.17±0.23 
km/s. The experimental error of the wave velocities VW were 10 %. The C-J detonation velocity by 
calculated chemical equilibrium computation, VCJ, is 1.23 km/s.  
 The stabilized detonation wave was observed in all the experimental conditions as shown in Table 
1. In the three experimental conditions, the quasi C-J detonation waves (Fig. 2) were observed. The 
quasi C-J detonation wave partly propagates at lower speed than the C-J detonation wave due to strong 
interaction of the rarefaction-wave generated from the spherically-curved surface projectile. 
 By these experiments, we confined the steadiness of this oblique detonation structure [2] proposed 
by the multi-flame pictures as shown in Fig. 2. 
 Then, we digitized the location of oblique detonation wave fronts. For Figure 5, the x-axis and y-
axis show the traveling direction of projectiles and the normal direction of traveling projectiles. 

Table 1: Condition of experiment 

Shot No. p0, 
kPa 

T0, 
K 

pV , 
km/s 

θW, 
deg. 

VW, 
km/s 

1 63.0r 0.05 277.6r 5.0 1.50r 0.18 33.9 1.24r 0.15 
2 63.3r 0.05 284.7r 2.5 2.26r 0.27 60.5 1.11r 0.13 
3 60.2r 0.05 284.0r 2.5 2.29r 0.27 62.0 1.07r 0.13 
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Figure 1 The schematic diagram of the experimental 
arrangement (top view). 
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Figure 2 The oblique detonation wave structure around 
spherical projectiles. 
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Figure 3 Multi-flame picture of the oblique detonation wave around the spherical projectile. (Shot No.1, 
p0=63.0r 0.05 kPa: 2C2H2+5O2+20.5Kr, T0=277.6r 5.0 K, Vp=1.50r 0.12 km/s, d=4.76 mm). 
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Figure 4 The detonation wave velocity and the 

projectile velocity 

 
Figure 5 The digitized x-y location of the oblique 

detonation wave front (Shot No.1) 
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