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1 Formulation

Despite its relevance to many practical applications (micro- and meso-scale combustion, gas turbines,
internal combustion engines, fire hazard and safety), flame propagation in ducts is not fully understood.
In addition to the instabilities of a freely propagating flame, i.e. hydrodynamic and thermal-diffusive
effects, a flame in a narrow enclosure experiences developing boundary layers, heat transfer to and from
the walls, radical quenching and/or surface reactivity. The non trivial interaction of these processes
gives rise to the wealth of peculiar combustion dynamics observed experimentally as well as numerically
[1-8].

Consider a combustible mixture at initial temperature T0 flowing in a channel of height h with mean
velocity U0. In what follows, x′ and y′ denote the (dimensional) longitudinal and transverse coordinates,
respectively. The temperature of the wall is maintained at T0 (upstream value) for x′ < 0 and at Tw

(downstream value) for x′ > 0, where Tw > T0. The chemical activity is modeled by an irreversible
single-step reaction of the form F → P + Q, where F denotes the fuel, considered to be deficient, P
the products, and Q the heat released per unit mass of fuel. The combustion rate, Ω, is assumed to
follow the Arrhenius law, Ω = ρ2BY exp(−E/RgT ), where ρ, B, Y , E, Rg and T are the density, the
pre-exponential factor, the fuel mass fraction, the activation energy, the universal gas constant and the
temperature of the mixture, respectively.

In this work the diffusive-thermal model is adopted, formally assuming that the mixture density
ρ, kinematic viscosity ν, thermal diffusivity DT , heat capacity cp, and molecular diffusivity D are all
constant. Consequently, the flow is not affected by combustion and the velocity profile is that of the
Poiseuille flow. The non-dimensional temperature is defined as θ = (T − T0)/(Te − T0), where Te =
T0 + QY0/cp is the adiabatic flame temperature based on the initial temperature T0 and the upstream
fuel mass fraction Y0. Similarly, θw = (Tw − T0)/(Te − T0) is the non-dimensional temperature of the
walls. The planar burning velocity, SL, and the thermal flame thickness defined as δT = DT /SL, are
also used in order to formulate the problem in non-dimensional form. Notice, that both SL and δT are
based on the initial temperature T0.

Choosing h to measure the coordinates and U0, h2/DT and Y0 to normalize the velocity, time and
mass fraction, respectively, x = x′/h, y = y′/h, and the system is modeled as

θt + m
√

d v θx = θxx + θyy + d ω, Yt + m
√

d v Yx = Le−1(Yxx + Yyy)− d ω, (1)

where ω = (β2/2Leu2
p)Y exp

{
β(θ − 1)/[1 + γ(θ − 1)]

}
and v = 6y(1− y).

The following non-dimensional parameters appear in the above formulation: the Zel’dovich number,
β = E(Te−T0)/RgT

2
e , the Lewis number, Le = DT /D, the heat release parameter, γ = (Te−T0)/Te, the
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reduced Damköhler number, d = h2/δ2
T , and m = U0/SL is the non-dimensional flow velocity measured

with respect to the planar burning velocity.
The boundary conditions for the temperature and mass fraction are:

Yy

∣∣
y=0,1

= 0, θ
∣∣
y=0,1

=
{

θw, x > 0,
0, x < 0; x → −∞ : θ, (Y − 1) → 0; x →∞ : Yx = θx = 0. (2)

The factor up = SL/UL arises in ω if the planar flame speed, SL, is used to define the thermal flame
thickness δT = DT /SL. Here, UL =

√
2ρBDT Leβ−2 exp(−E/2RgTe) is the asymptotic value of the

velocity of the planar flame calculated in the high activation energy limit, β À 1. This factor (up) is
introduced for convenience in order to have the non-dimensional planar flame speed exactly equal to one
for finite values of β.

In what follows, we consider flames with Le = 1. The Zel’dovich number and the heat release
parameter were assigned the fixed values β = 10 and γ = 0.7, considering these values representative for
many hydrocarbon combustible mixtures. The numerical value of up calculated for β = 10, γ = 0.7 and
Le = 1 is up ≈ 0.942. The focus of this paper is to understand the influence of the non-dimensional flow
velocity, m = U0/SL, and the wall temperature, θw.

2 Selected numerical results

We present here only the results obtained for a narrow channel with d = 5. Three different flame
types, all symmetric with respect to y = 1/2 and with the maximum temperature point located on the
symmetry plane, were obtained over the range of velocities considered (m ≤ 5). The flame position xw

and the maximum temperature θm are plotted in Fig. 1 as functions of the non-dimensional velocity
m. The solid segments of the curves correspond to stable steady states (weak flames at small m, and
symmetric flames at large m), while the dashed segments correspond to unsteady states (symmetric
oscillatory flames, exhibiting periodic ignition and extinction).
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Figure 1: Flame position xw (left plot), and maximum temperature θm (right plot) versus non-
dimensional flow velocity m for θw = 0.6, d = 5 (solid line: steady states, dashed line: unsteady
states, ∆ and ∇ mark the maximum (ignition point) and minimum (extinction point) values during the
oscillation period, filled circles mark the critical values).

At low velocities (m . 0.61), the flame is anchored at xw ≈ 1.0 and the maximum temperature θm

exceeds the wall temperature θw only slightly, see Fig. 1(right). Due to their low heat release, these
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Figure 2: Time history of the flame position xw (left plot) and the maximum temperature θm (right
plot) at selected values of the non-dimensional velocity m (m = 0.59 weak flame, m = 2 periodic
ignition/extinction (symmetric oscillations), m = 3.5 steady symmetric flame; θw = 0.6, d = 5). The
dot-dotted lines in (b) represent the wall temperature θw = 0.6.

flames will be referred to as weak flames. Fig. 2 (top plots) show the time history of the flame location
and the maximum flame temperature, revealing that the steady state is approached in a quickly-decaying
oscillatory manner (θm ≈ 0.59).

At intermediate velocities (0.61 . m . 3.1), marked in Fig. 1 with dashed segments, the solution
loses stability at a supercritical Hopf bifurcation at m ' 0.61, and oscillatory flames exhibiting repetitive
ignition and extinction are obtained. The upper (∆) and the lower (∇) triangles in Fig. 1 mark the
maximum (ignition point) and minimum (extinction point) values of xw and θm during an oscillation
period. For m = 2, the flame position xw oscillates between between a location slightly xw ' 0.5 and
xw ' 2.7, following the oscillations of the maximum temperature θm between a value slightly above the
wall temperature θw (extinction) and 1.4 (ignition) with a constant period ≈ 0.91, (Fig. 2, middle plots).
The isotherms at the four instances corresponding to the points marked in the middle plots of Fig. 2,
are plotted in Fig. 3 (left plot).

As the inflow velocity is increased, the upstream propagation is increasingly restricted till for m &
3.1 the oscillation amplitude shrinks to zero at a second supercritical Hopf bifurcation. The igni-
tion/extinction mode ceases, and a new steady symmetric flame is obtained, Fig. 2 (bottom plots).
These flames burn more intensely than the ones at low m, and the maximum temperature in the domain
is significantly higher than the wall temperature. Numerically, the same sequence of combustion modes
were also observed at the low inflow velocity range in the lean premixed hydrogen simulations in micro-
[7] and meso-scale channels [8] using detailed chemistry and transport, albeit at conditions that differ
significantly from the conditions considered here.

The flame response curve described in Fig. 1, for d = 5 and θw = 0.6, is, as expected, extremely
sensitive to the value of the wall temperature. As shown in Fig. 3 (right plot), a small reduction in
θw from 0.6 to 0.54 is sufficient to qualitatively alter the diagram: the transition from the weak to the
ignition/extinction flame is supercritical for wall temperature θw ≤ 0.57, but becomes subcritical at θw =
0.54. The dash-dotted line in Fig. 3(right) indicates the region of hysteresis, where two stable combustion
modes, mild combustion and periodic ignition/extinction, can be observed at the same parameter values.
Depending on the initial condition and/or external perturbations, either flame type can be realized at
such conditions. On the other hand, the supercritical transition from the ignition/extinction to the
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Figure 3: Left plot: Repetitive ignition/extinction (symmetric oscillations) mode: isotherms at intervals
0.05 from θ = 0 to θmax (θmax = 0.789, 1.358, 1.182, and 0.648, in (1) to (4), respectively) at the four
instances marked as 1, 2, 3, 4 in Fig. 2 (m = 2, θw = 0.6, d = 5). Right plot: Steady flame position
xw versus the non-dimensional velocity m for d = 5 and different wall temperatures θw (solid segments:
stable solutions, dashed segments: periodic solutions, dash-dotted segments: unstable solutions). For
θw = 0.54, the triangle indicates the turning point.

steady symmetric flame is not affected by θw significantly. At even lower θw, only unstable solutions
leading to flame extinction are obtained, as will be discussed in the next section.
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