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1 Introduction
The determination of the conditions for self-sustained detonation propagation in a non-uniform gaseous
mixture constitutes an important issue. The explosive composition formed with the oxygen of the air
after the leak of a gaseous hydrocarbon from a duct or a tank necessarily involves a distribution in
its temperature and composition. The state ahead the detonation front in a pulsed detonation engine
or in a high-speed combustor is also non-uniform because of the injection and ignition techniques and
of the repartition of the detonation products. A few laboratory experiments, where initial gradients
are either parallel or normal to the propagation direction of the detonation, are reviewed in [3]. Our
work is an attempt to model the conditions for detonation propagation in non-uniform compositions
at constant pressure, a problem which, to our knowledge, has not yet received attention, contrary to
the spontaneous onset of detonation in hot, non-uniform compositions, e.g., [5]. Our objective is not to
interpret the experiments but rather to bring out the salient features and the magnitude orders of the
phenomena by means of simplification of the physics and consideration of generic configurations.

2 Summary of calculations
We solve the classical eigenvalue problem for non-ideal self-sustained detonations starting from the
compressible reactive Euler equations and the one-step Arrhenius reaction rate in the asymptotic limit
of large reduced activation energies. We actually extend an approach used by He and Clavin [2] in their
study of detonation initiation by an energy source in a constant initial state. The shock state then
appears as a good representation of the induction state, and the mass, momentum and energy fluxes
can be considered as conservative in the heat-release zone whereas their estimates in the induction zone
must account for small corrections that are functions of the front acceleration δD/δt and curvature κ
and of the changes X∞ in the initial temperature T∞ and dilutant mass-fraction x∞. Our calculations
result in the compatibility relation
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where the index ∞ denotes the initial state, D is the detonation velocity, γf and γb are the heat-
capacities ratios of the reactants (f) and products (b), cst is the planar steady-state induction length,
β∞ is a coefficient accounting for the contributions of the differences in the molar masses, in the enthalpies
and in the heat-capacities ratios γf1 and γf2of the non-diluted reactants and of the dilutant, and η∞
is the O(10−1) ratio 2M−2∞ /(γf − 1) with M∞ = D/c∞ the shock Mach number and c∞ the initial
sound velocity. We thus observe that the detonation decelerates when the "loss term" κ−X∞ dominates
the "production" term W . Using the identities D = dR/dt and dD/dt = (dD/dR) (dR/dt), we can
substitute R−1 to t as independant variable and turn the hyperbolic evolution law (1) into an ordinary
differential system of 2 separable equations.

Next, extending to variable initial states our former results for constant initial states [6], we derive
expression (2) for the actual induction time τdet and length cdet behind the shock of our self-sustained
detonation. We then infer the shock-initiation criterion (3) where α is the iso-induction time parameter
τst/τdet and τst is the planar steady-state induction time. For example, setting α = 0 or α = 1/2 gives
the constraints for τdet to be bounded or twice the steady-state induction time for the same value of D,
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n is an O (1) state function, Z0 is the reduced activation energy Eact/RgasT0 relative to the shock
temperature T0 for a shock with velocity D and ω∞ is a coefficient similar to β∞ (1). We thus observe
that all the self-sustained detonation shock dynamics are not compatible with bounded induction times
which must remain small so detonation propagation be ensured.

3 Examples of results
We have chosen a sinusoidal function (Figure 1) to model the profiles of the initial temperature T∞ (r)
and dilutant mass fraction x∞ (r). The quantities R0 and R(t) are the shock positions at times t = 0 and
t > 0, and R0T/x and R1T/x are the abscissas where variations begin and finish (vertical bars in Figures
3 and 4). For simplicity, we have considered that the initial state before variation (subscript ∞1) was
nondiluted (x∞1 = 0) and x∞ thus represents the relative dilutant mass fraction. The control parameters
are the initial temperature T∞1 before variation, the relative positions ∆R0T/x = R0T/x/R0 − 1 where
variations begin, the variation lengths λT/x and the relative variation amplitudes ∆T/x. The additional
parameters kT/x are used for generating two cases of initial variations. Setting kT/x = 1 simulates a
dispersion of initial state, with monotonical variations of T∞ and x∞ from their initial values (T∞1, 0)
at R0T/x to their final values (T∞2, x∞2) at R1T/x. Setting kT/x = 2 simulates a spatially-limited
variation in initial state, such as a hot or a diluted layer of gas, for which T∞ and x∞ vary from their
initial values (T∞1, 0) at R0T/x, reach (T∞2, x∞2) in the middle of the variation interval and go back to
their initial values at R1T/x. We have chosen the initial state before variation identical to the reference
thermodynamical state(index ∗, p∗ = 1.01325 bar, T∞1 = T∗ = 298 K, x∞1 = x∗ = 0), and used the
corresponding properties (density ρ∗, velocity D∗CJ and induction length c∗ in the steady reaction zone of
the planar detonation propagating at the reference velocity D∗CJ in the constant initial state of reference
p∞, T∗, x∗ = 0) to nondimensionalize the results.

Figure 2 shows the velocity D of a spherical sonic detonation as a function of its total curvature κ = j/R
for a constant initial state chosen as the reference state. The control parameter is the initial shock position
R0 at D = DCJ . The largest values of R0 are associated with the D(κ) integral curves to (1) that always
realize the planar CJ regime. Too small R0’s give integral curves that cannot reach the CJ point. A
limiting initial radius Rdetcrit, here equal to 738.57 c∗, generates a separatrix integral curve between the
domain, on its left, for which the detonations continuously relax to the CJ point, and the domain, on
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its right, for which the shock dynamics of the sonic detonation eventually fails to initiate combustion.
The latter integral curves intersect the line D(κ, α = 0) representing the detonation criterion (3) for
infinite induction. In this situation, the shock and the reaction zone (the flame) become decoupled.
The integral curves, their bifurcation separatrix and the no-shock-initiation domain associated with the
present high-activation energy analysis were first presented at an invited talk [7]. More recently, Kasimov
and Stewart [4] have obtained similar integral curves with another integration approach.

Figures 3 and 4 show the velocity D of a spherical sonic detonation (j = 2) as a function of its position
R for a localized increase in the dilutant mass fraction (Fig. 3) and for a combined localized increase in
the dilutant mass fraction and in the initial temperature (Fig. 4) (kT/x ≡ k = 2). The detonation initial
radius R0 at D = DCJ is chosen larger (840 c∗) than the minimal value Rdetcrit = 738.57 c∗ for continuous
propagation of a spherical detonation on the constant initial state before variations (Fig. 2). We observe a
complicated dynamical behavior with first a wave reacceleration and then a deceleration. Reacceleration
occurs if the detonation initial radius is larger than the value Rdetcrit for constant initial state. The larger
∆x, the larger the effect on the detonation velocity and too large ∆x lead to bifurcation towards the no-
shock-initiation domain (Fig. 3). A very small temperature increase is then enough to obtain bifurcation
to a continuous propagation of detonation (Fig. 4). The dotted line N is the zero-acceleration curve
which, for constant initial state, reduces to the well-known "curvature-celerity relation", e.g., [2], [4].
The dashed line is the local (instantaneous) CJ velocity.

Many other examples can be generated. All expected dynamical behaviors draw on the same physics with
either continuous relaxation to the final CJ regime or shock-flame decoupling. In this case, the process
can no longer be described by the sonic detonation dynamics (1), which is only valid for induction lengths
small compared to the shock position. What happends is that the flame propagates by itself, acting as
a piston on the shock ahead. Reinitiation can occur at larger distances in the shocked domain between
the flame and the shock if, depending on the initial conditions, the adiabatic cooling due to the flow
divergence becomes again small enough, compared with the energy release [6], [7]. Small hemispherical
detonations then appear at one or several points close to the flame front, overcome the shock and rapidly
propagate transversally in the shocked domain between the flame and the shock. Once these transverse
processes are achieved, the self-sustained regime of spherical detonation is obtained (see the review in
[1] and the references therein). The detail of these transients is beyond the reach of our model. However
the model identifies subcritical and supercritical limits which, respectively, give necessary and sufficient
conditions for detonation. Below the subcritical limit, the combustion front cannot be coupled to the
shock front because the volumetric expansion rate behind the shock is too large. Above the supercritical
limit, the relaxation from an overdriven regime to the self-sustaining regime or from one self-sustaining
regime to another self-sustaining regime is a continuous process, without decoupling and recoupling of
the combustion and shock fronts. We interpret the domain between these limits as the parametric zone
in which experiments show successions of decouplings and transverse recouplings of the combustion and
shock fronts before the final self-sustaining CJ regime. Also, the model yields characteristic critical
lengths larger than the CJ characteristic chemical length of reference by several orders of magnitude, a
well-established experimental feature of gaseous detonations.

Numerical simulations now catch the experimental dynamical behaviors of gaseous detonations such as
cellular structures, transverses reinitiations after shock-flame decoupling or bifurcation from a multi-cells
front to a spinning front. However, their predictive ability is constrained by the difficulty to implement
precise chemical kinetics and by very long computing times. Much work remains to be done not only to
numerically handle large chemical schemes but also to experimentally determine high-pressure chemical
kinetics. The type of analysis presented in this paper is limited to slow detonation dynamics and thus
has a short reach compared to numerical simulations. However, it is helpful for determining orders of
magnitude, for bringing out the salient features of complicated phenomena in generic configurations and
for assessing the predictive ability of numerical simulations.

We thank Professor Paul Clavin for fruitful discussions.
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Figures : (1) Notations. (2) Spherical detonation in a constant initial state.
(3)-(4) Spherical detonation coming across a locally-variable initial state.
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