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1 Introduction

Experiments and numerical simulations of detonation propagation problems are characterized by un-
steady motion due to the intrinsic instability of the reaction zone structure. Investigations of the det-
onation linear stability problem have almost exclusively been concerned with model systems using the
perfect gas equation of state and reaction mechanisms consisting of a small number (usually one) of
irreversible reactions [1]. Starting from the one-step model used in the pioneering studies of Erpenbeck
and the reformulation of the numerical approach by Stewart and coworkers [2, 3, 4], researchers have
been making steady progress by considering more complex chemical reaction models and equations of
state [5, 6].

The scope of our present study is the linear stage of the instability of an initially steady, one-
dimensional base flow based on the ZND model of detonation structure. Our goal is to develop numerical
tools that will enable the computation of stability characteristics for multi-step reaction mechanisms with
reversible reactions, realistic rate constant representation, and mixture thermodynamics with variable
specific heat. To this end, we have generalized the formulation of the linear stability equations following
the method of Lee and Stewart [2] and Short [3, 4].

We have verified that our method will reproduce the previous one- and two-dimensional results of
Lee and Stewart and Short and Stewart and have proceeded to examine the effect of reversibility on the
one-step reaction. We have constructed a family of CJ solutions with a fixed CJ temperature but varying
extents of reversibility in the reaction rate. The extent of reversibility is controlled by the entropy of the
product state relative to the reactant. Using this family of CJ solutions, we have computed the unstable
modes as a function of the extent of reversibility and degree of overdrive.

2 Formulation and Implementation

The system of interest is governed by the reactive Euler equations. Following the normal modes approach
outlined in Lee and Stewart [2] and Short [3], the generalized dimensional governing equations are the
ZND equations and

Aoz1
,x + (ωI + Co + ikBo) z1 + (ωI + ikBo)boψ1 = 0 (1)
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where

z = [v,u, v, P, Y1, Y2, . . . , YN ]T Z(P, v,Y) = −G
v

N∑
i=1

e,YiΩ̇i b = z,x (2)

A =



u −v 0 0 0 0 . . .
0 u 0 v 0 0 . . .
0 0 u 0 0 0 . . .
0 ρa2

f 0 u 0 0 . . .

0 0 0 0 u 0 . . .
0 0 0 0 0 u . . .
. . .


B =



v 0 −v 0 0 0 . . .
0 v 0 0 0 0 . . .
0 0 v v 0 0 . . .
0 0 ρa2

f v 0 0 . . .

0 0 0 0 v 0 . . .
0 0 0 0 0 v . . .
. . .


(3)

C =



−u,x v,x 0 0 0 0 . . .
P,x u,x 0 0 0 0 . . .
0 v,x 0 0 0 0 . . .

(ρa2
f ),vu,x − Z,v P,x 0 (ρa2

f ),P u,x − Z,P (ρa2
f ),Y1u,x − Z,Y1 (ρa2

f ),Y2u,x − Z,Y2 . . .

−Ω̇1,v Y1,x 0 −Ω̇1,P −Ω̇1,Y1 −Ω̇1,Y2 . . .

−Ω̇2,v Y2,x 0 −Ω̇2,P −Ω̇2,Y1 −Ω̇2,Y2 . . .
. . .


(4)

The superscripts in Equation 1 designate the base state (o) and the perturbed state (1), ψ1 is the constant
magnitude of the initial perturbation, ω is the complex eigenvalue, and k is the wave number. The other
symbols represent: v specific volume, (u,v) normal and tangential velocity, P pressure, Y species, Ω̇i

net production rate of species i, ρ density, af frozen soundspeed, e internal energy, and G Grüneisen
coefficient. In addition to these equations, we use the ideal gas equation of state.

We have implemented the solution in the physical space domain as a shooting problem that requires
the solution of the set of coupled ordinary differential equations for the base flow and perturbed quanti-
ties. Our implementation uses Cantera [7] to evaluate all thermodynamic quantities and derivatives of
quantities dependent on the kinetics model. By using Cantera, the user is free to select the mechanism,
thermodynamic, and reaction rate models specific to his problem. This includes the ability to use the
sizable hydrocarbon fuel reaction mechanisms that have been developed by the combustion community
in the last two decades as well as reduced or notional mechanisms with pseudo-species.

In previous implementations, the one step irreversible model [2] has been hard-coded and the user
provides several parameters. Most researchers have validated their implementations using Erpenbeck’s
case: non-dimensional activation energy Ẽ = 50, non-dimensional heat release Q̃ = 50, ratio of specific
heats γ = 1.2, and overdrive f = (U/UCJ)2 = 1.2. Using Cantera, we are able to create an input file
that mimics this case. In addition, we have the flexibility to specify a reversible reaction and vary the
amount of reversibility, i.e. the amount of product achieved at equilibrium, by adjusting the entropy
difference between the reactant and product species. We have chosen to create a family of systems each
with one global reversible reaction where the Chapman-Jouguet temperature TCJ remains constant. To
achieve this we specify the desired entropy difference (∆S/R) and desired TCJ and solve for the required
heat release (∆H/(RT0)). Table 1 describes the family of systems that we have created. We see that
the ∆S/R = 0 case is comparable to the irreversible case.

The computational domain is the reaction zone in the shock-fixed frame such that the left boundary
conditions are the perturbed shock jump conditions. We have derived these for a general equation of
state and implemented them for an ideal gas equation of state. At the right boundary, the system must
satisfy a radiation condition requiring that all waves travel out of the domain. In the case of a single
reversible reaction between perfect gases with equal molecular weight, the characteristic wave speeds are
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∆S/R ∆H/(RT0) UCJ λeq

0 50.70 1701.15 0.986
-1 51.74 1700.30 0.965
-2 53.93 1699.01 0.924
-3 57.78 1697.56 0.860
-4 63.35 1696.42 0.783
-5 70.34 1695.66 0.703
-6 78.38 1695.20 0.630
-7 87.17 1694.90 0.566
-8 96.50 1694.72 0.511

Table 1: Reversibility parameters for TCJ = 3599.29 K

complex and can be determined by the following polynomial.

−ωτ∗o
(
ae

af

)2

[c− uo]
[
(c− uo)

2 − a2
f

]
+ c

[
(c− uo)

2 − a2
e

]
= 0 (5)

where af and ae are the frozen and equilibrim soundspeeds, c is the characteristic wave speed, and τ∗

is a function of the near equilibrium relaxation constant, τ =
(

∂Ω̇
∂λ

)−1

. The roots of this equation are
depicted in Figure 1. The boxes indicate the limiting behavior of the irreversible reaction when af = ae.
We have noted that only one root consistently has a negative real part and radiates back into the system.
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Figure 1: Roots of Eq. 5 for the first mode [2].

We have shown that determining the eigenvalues of the following representation of our problem is
equivalent to determining the characteristic speeds.

1
c
z1 = A−1

[
D− ik

ω
B− 1

ω
C

]o

z1 (6)
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where

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−a2

f 0 0 1 −a2
fρoσ

0 0 0 0 1

 (7)

We then dot the numerically determined eigenvector corresponding to this eigenvalue with the solution
vector far from the reaction zone to determine a numerical radiation condition. This alternate method-
ology applied to the one dimensional irreversible system results in a radiation condition identical to that
presented in [2]. We can also neglect the chemistry (i.e. C = 0) and recover the condition presented in [3]
for the two dimensional irreversible system. The shooting method ensures that the radiation boundary
condition is satisfied within a user-specified tolerance. In a large multi-step mechanism with reversible
reactions, we believe that this method will be applicable.

Another important consideration concerning the Cantera input files is the length scale of the problem.
We implement the problem using the CVODE solver [11] and must non-dimnensionalize pressure and
velocity quantities to appease the solver. For this reason, we adopt the half reaction length as the length
scale [2, 3] and the post-shock pressure as the pressure scale. This length scale is imposed by adjusting
the pre-exponential component of the Arrehnius reaction rate such that λ = λeq/2 occurs at t = 1. Due
to this requirement, the pre-exponential value varies with overdrive f and degree of reversibility ∆S/R.

3 Work in Progress

Now that we have created the family of input families described above, we plan to investigate the effects
of reversibility on stability as a function of overdrive. We will look at differences between using a frozen
radiation condition (C = 0) and a reactive radiation condtion (C 6= 0). Eventually, we plan to study
this problem in two dimensions (k 6= 0) and for more complex chemical mechanism models.
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