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1 Introduction  

There is an increasing interest in chemical reaction engineering towards application of bifurcation theory and 

parameter continuation in order to obtain a complete dynamical characterization of the mathematical model of 

the system (for example a reactor plant). In order to properly design and control chemical reactors, it is necessary 

to accurately describe all the regime conditions when relevant design and operation parameters are changed. 

More generally, mathematical models of chemically reactive systems could exhibit complex regime transitions 

marked by catastrophic bifurcations (sudden changes in temperature and/or concentrations). Bifurcation analysis 

is the tool of choice in investigating dynamic features of non-linear systems and, particularly, in identifying 

multi-stability regions. However, standard and popular codes for automatic continuation, such as AUTO (Doedel 

et al., 1997), are generally unsuitable for large scale systems. Moreover, these software packages work 

efficiently only if the mathematical model of the system has an analytic expression for the Jacobian matrix. It is 

worth to note that the main information about the dynamical feature of a system is represented by the 

eigenvalues of the Jacobian matrix. Therefore, the numerical computation of these eigenvalues is one of the main 

tasks in the continuation algorithms. Generally, this task is the slowest one in the execution of the continuation 

algorithm and, when the system under study has no analytic expression of the Jacobian matrix, it must be 

computed numerically and the whole process becomes even more time consuming.  

Parallel computation is the most promising approach to reduce the computation time in complex numerical 

problems. Presence of independent computation tasks that can be conducted in parallel is not the only condition 

to obtain successful implementation of parallel algorithms. To obtain convenient speedup, the parallel fraction of 

the whole algorithm must be very high (Amdahl, 1967). For example, when bifurcation analysis requires 

extensive numerical work to integrate functions for independently changed integration bounds, and this task is 

dominant in the computing time, we are in a favourable conditions for best performance of parallel algorithms. 

This condition is met for a wide class of systems, which include – but are not limited to – systems for which the 

Jacobian matrix must be computed numerically via repeated independent numerical integrations. Several 

examples are found in the literature. Continillo et al. (2006) analyzed discontinuous periodically–forced reactors 

such as Reversed-Flow–Reactors (RFR) by conducting bifurcation analysis on a properly constructed discrete 

map, based on the system’s Poincaré map. This map is not available in analytical form and thus it must be 

computed numerically. Most of the computation time is spent during repeated time integrations of the map. In 

this work we implement and conduct parallel bifurcation analysis of systems with require extensive independent 

numerical integration work. The method is applied by means of parallel versions of AUTO (Doedel et al, 1997) 

modified by the authors. Both synchronous and asynchronous computations are possible, depending on the 

available computing architecture (shared vs. distributed memory) We report implementation details and results 

of bifurcation analysis of the discontinuous periodically–forced distributed model of a reactor via Poincaré map. 
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2   Numerical bifurcation analysis of discontinuous periodically forced systems 

Discontinuous periodically forced systems, like those arising from modelling of periodically forced reactors (see 

Russo et al., 2002), can be formulated in abstract form as: 

  ( , , ( ))g T=x f x pɺ   (1) 

where represents the discontinuous forcing with period T, x is the state vector and p the parameters vector. The 

continuous time system can be studied via its Poincaré map. The details of this approach are described in Russo 

et al, 2002. The authors adopt AUTO 97 (Doedel et al., 1997) to conduct the bifurcation analysis. AUTO can 

trace the fixed point locus of a discrete map, compute branches of stable and unstable fixed points for a discrete 

system, and compute the Floquet multipliers that determine the stability along these branches. Standard use of 

AUTO requires that the user supplies an analytic expression of the discrete-time system. In their case, an analytic 

expression for the map is unavailable, thus they resort to numerical evaluation of the map. The technique 

consists of an interaction between AUTO (or any equivalent continuation software) and an ODE solver which 

efficiently evaluates the map. More explicitly, for the continuous-time forced system reported in Eq. 1, let the 

Poincaré map P be: 

 ( )1 ,
k k+ =x P x p  (2) 

The map must be evaluated numerically. For periodically forced systems the Poincarè map is easily constructed 

by sampling the time trajectory at each period T. Then, starting from 
k

x , the equations of the continuous–time 

system are integrated over a time period T and the result can be assumed as initial condition of a new time 

integration of the equations of the continuous time system, again on a time interval T. Numerically, the 

continuation of the fixed points of the map is conducted with calls from the AUTO main routine to an external 

integrator. The vector state of the system is sent to the integrator, which sends it back after a time equal to T, for 

the one-iterate. The bifurcation analysis is conducted by finding the zero of the algebraic equation: 

              ( ) ( )( ), , , 0
T

ϕ− = =x P x p F x x p  (3) 

where ( )
T

ϕ x  represents the integration operator along the time variable. Of course, since the map has no 

analytical expression, this map and the Jacobian are to be computed numerically. This involves expensive 

numerical integrations in a number that grows with the square of the order of the reduced dynamical system. In 

our examples, function evaluations include numerical integration of given expressions. Parallelism applies to the 

numerical computation of derivatives. As an example, the following steps are necessary in order to compute the 

Jacobian matrix by means of second order difference operators:  

1. Prepare 2n perturbed vectors of starting conditions: 
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2. Compute values of right hand sides with suitable perturbed conditions. Each of these operations takes 

significant computation power. 

( ), ( ) 1, 2 ...
iB iB iF iF

i n= = =F F x F F x  (5) 

3.  Compute the numerical derivatives by second order finite difference operators. These operations do not take 

so much computation power. 

 
( )

2
1,2 ...iF iB

i
x

i n
ε

−∂
=

∂
=

F FF x
 (6) 

where n is the dimension of the system (number of state variables) and ε  is an arbitrary small perturbation. 

Subscript F means forward, B means backward perturbation. It is worth to stress here that all the operations 

expressed by Eqs (4, 5, 6) are intrinsically independent and might be run in parallel. Particularly, tasks (5) take 
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almost the entire computation time and are therefore distributed among available processors. It appears that the 

maximum number of processors that can be usefully involved is limited by twice the dimension of the system. 

3 Synchronous and asynchronous approaches 

We used MPI and PTHREADS parallel libraries for distributing tasks around the cluster. There are two possible 

computation regimes, namely synchronous and asynchronous.  

The Synchronous regime is designed for homogeneous clusters and for shared memory Symmetric Multi 

Processing (SMP) machines. This regime gives speedup starting from a 2–processor system. Performance of the 

algorithm is limited by the slowest processor. Generally in such systems all processors have the same 

performance and therefore if the job is equally divided among processors. Delivery of results is expected to 

occur synchronously.  For large systems it is expected that the delay of the network connection does not play a 

significant role. To investigate this aspect, a comparison between a shared memory Symmetric Multi Processor 

(SMP) machine and a distributed cluster is conducted. SMP machines are composed by few high–performance 

nodes and latency is very small, as it is governed by the memory bus speed, whereas typically distributed–

memory machines (clusters) are made by many medium–performance  nodes connected by a network. If the 

parallel speedup is comparable between the two kinds of architectures, it will be concluded that communication 

speed is not too important in our problems.  

The Asynchronous regime is best suited for heterogeneous clusters or GRID computing, because it distributes 

the job dynamically for each node. So for example when slower and faster computers are used or the external 

load on the cluster is unknown/unpredictable, the algorithm behaves similarly to peer–to–peer networks. The 

speed in general is not limited by the slowest processor. This concept requires at least three processors to yield 

speedup (one master and two slaves). Since the work is partitioned into 2n independent simulations, this concept 

works well when the dimension of the system is larger than half of the number of available nodes, otherwise, all 

jobs would be allocated at the first distribution, dynamic allocation would not be possible and speedup would 

again be limited by the slowest processor.  
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Figure 1  - Sketch of synchronous(left) and asynchronous (right) Jacobian subroutine 

The software was prepared and run on a Linux cluster equipped with ROCKS 3.2.0 operating system and LAM-

MPI 7.0.6. We used a system with a 8-processor shared memory machine Intel ® Xeon ™  MP CPU 2.80GHz 

8Gb RAM plus 6 individual nodes 1.8 GHz 500Mb RAM. Network was 100 GigaEthernet. 

The software was tested by computing the solution diagram of a Reverse Flow Reactor (Russo et al., 2002). 

Details of the construction of the reduced dynamical system are described in Russo et al 2002, The system is 

finally discretised to 36 ordinary differential equations. A typical solution diagram is represented in Fig 2. 

Complex dynamical regimes are encountered, which require extensive computations. Periodic symmetric and 

asymmetric regimes, quasi periodic asymmetric regimes and chaotic regimes are detected. Stability computation 

of each point of the line needs several estimation of Jacobian matrix of the discrete system. Comparison between 

a homogeneous cluster and a shared memory 4-processor machine, synchronous approach, shows that speedup in 
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the two cases is similar and very large as seen in Figure 3, left. The asynchronous approach proves effective 

when used on heterogeneous clusters (Figure 3, right), in that available computing resources are fully exploited 

for the minimum elapsed time. 

 
 

Figure 2 – Solution diagram, RFR reactor (Russo et al, 2002), switch time ττττ as bifurcation parameter. 
 

 

Figure 3 -  Left: Speedup comparison, RFR model,  distributed cluster and shared memory machine. 

Right: demonstration of functionality of the asynchronous approach 

 

References 

Amdahl, G. M. (1967), ‘Validity of the single-processor approach to achieving large scale computing 
capabilities’, Proceedings of AFIPS Conference, pp. 483–485. 

Continillo G., Grabski A., Mancusi E., Russo L. (2006). Bifurcation analysis of a periodically forced pair of 
tubular catalytic combustors, Combustion Theory and Modelling Vol. 10, No. 6, December 2006, 1023–1035 

Doedel EJ, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sanstede B, Wang X. (1997) ‘AUTO97: 
Continuation and bifurcation software for ordinary differential equations’, Technical Report, CML, 
Concordia Univ. 

Russo, L., Continillo, G., Maffettone, P.L., Mancusi, E., and Crescitelli, S. (2002). Intermittencies and symmetry 
in a reverse-flow chemical reactor, Dynamics Days Europe 2002, Heidelberg, Germany, July 15–19. First Prize 
poster award: http://www.iwr.uni-heidelberg.de/conferences/dd02/award/index.html 

Processor State No. of jobs Time, s 

1  Free 528 

2  Free 529 

3 Free 527 

105.4 

1  Free 556 

2  Free 529 

3  Busy 499 

131.0 

1  Free 590 

2 Busy 495 

3 Busy 499 

151.1 

τ

100 300 500 700

θ
g

,o
u

t

1

2

3


