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1   Introduction  
In the last 30 years, the real advantages of forced unsteady–state operations over conventional steady–

state regimes of catalytic fixed–bed reactors have been widely supported. Special attention has been devoted to 

Reverse Flow Reactors (RFR) for catalytic combustion characterized by the periodic inversion of the flow direc-

tion (Matros & Bunimovich, 1996). The heat produced by the reaction is thus trapped in the central portion of 
the reactor; hence it is possible to conduct autothermal operation with gases containing low amounts of reactant.  

Generally, the basic solution of periodically forced systems, such as RFR reactors, is a periodic solution 

with period equal to the forcing period, namely the double of the switch period. Furthermore, as model 

parameters are varied, a cooled RFR can exhibit very complex dynamic behaviour such as multiple stable 

solutions, subharmonic, quasi–periodic and chaotic solutions (e.g. Řeháček et al. 1998). Therefore, to properly 

design a RFR reactor, it is fundamental to foresee stability changes of regime solutions as model parameters are 

varied. This can be accomplished by means of bifurcation analysis via parameter continuation techniques. The 

RFR is, in general, described by a heterogeneous distributed model. In order to conduct the continuation 

analysis, the original infinite–dimensional PDE evolutionary equations are to be reduced to a finite–dimensional 

dynamical system, by means, for example, of orthogonal collocation on finite elements (Villadsen and 

Michelsen, 1978). Mancusi et al. (2003) conducted the numerical bifurcation analysis of the RFR by means of a 

properly constructed discrete map, based on the system’s Poincaré map. This map is not available in analytical 

form and thus it, as well as its Jacobian, must be computed numerically; they also pointed out that most of the 

computation time is spent during repeated time integrations of the map. This leads to the need of expressing the 

original model as a set of ordinary differential equations of the lowest possible order.  

The Proper Orthogonal Decomposition (POD) approach delivers an optimal set of empirical basis 

functions from an ensemble of observations obtained either experimentally or from numerical simulation, which 

characterize the spatio–temporal complexity of the system. Obtained orthogonal functions can be afterwards 

used in a Galerkin projection of the original system and as a result a low–dimensional model can be developed 

(Lumley, 1967). In this work, we apply POD/Galerkin to a model of RFR. We analyze the performance of the 

method by comparing solutions from the reduced model with a “reference” numerical solution. 

2   Mathematical model and POD analysis 
The reverse flow catalytic combustor (Figure 1) is modelled by a one–dimensional distributed model 

considering heat and mass transfer resistance between the gas and the solid phase, axial dispersion in the gas 

phase and axial heat conduction in the solid phase and cooling through the reactor wall. Constant value of 

effectiveness factor is assumed. The dimensionless mass and heat balances, considering first order reaction on 

the solid catalyst phase, and the relevant boundary conditions: 
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The forcing ( )g t  is a discontinuous periodic square wave with minimum period of is 2T τ=  where τ is 

the period of switching and is equal to 1 for flow going from left to right and equal to 0 for reverted flow. A 

general approach for study the dynamical behaviour of periodically forced system is based on the Poincaré map 

P (e.g. Kuznetsov, 1998).  

 

Figure 1. Schematic of a Reverse Flow Reactor 
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The PDE model is first approximated with finite differences and reduced to a system of ODE, which is then 

employed to build reference solutions by time integration. In the POD scheme, the objective is to determine a set 

of orthogonal basis functions which minimize, on average, the least square error between the truncated 

representation of the model and the “true” solution. By collecting time series obtained by simulation, the 

sampled data set is a vector–valued function given as a matrix: 
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where N  is the number of positions in the spatial domain and M is the number of samples taken in time. A 

POD basis { }1 2
, , ,

N
ϕ ϕ ϕΦ = …  is obtained by solving the eigenvalue problem C λΦ = Φ  where 

( , ) ( ), ( )
t t

C x x U x U x′ ′=  is the averaged autocorrelation matrix and angular brackets denote time–averaging 

operation. Using the POD modes, the solution ( )
t

u x  can be expressed as  

( ) ( ) ( )
1

K

t k k
k

u x a t xϕ
=

= ∑ɶ  

where K N<  is the number of modes used for truncation, whereas ( )k
a t  are modal coefficients that can be 

calculated by Galerkin projection of the original PDE on the POD modes. The ordering of the eigenvalues from 
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the largest to the smallest induces an ordering in the corresponding eigenfunctions, from the most to the least 

important.  

3   Results and discussion 

Figure 2 reports the solution diagram of this system obtained by parameter continuation, using the inlet 

temperature 
feed

θ  as the bifurcation parameter. From left to right, periodic symmetric solutions occur until a 

pitchfork bifurcation (triangle) breaks the symmetry generating a pair of asymmetric periodic solutions. Then, on 

their branches, two secondary Hopf bifurcations (black squares) lead to a symmetric aperiodic regime (Russo et 

al, 2002). The three unstable branches (dotted lines) reconnect at a subcritical pitchfork bifurcation (triangle). 

 

 
 

Figure 2 −−−− Solution diagram. Bifurcation parameter: 
feed

θ . 

 

The finite–difference solution with 50 nodes (150 ODE) obtained for 3
feed

θ = −  (aperiodic solution) was 

used as reference (“true”) solution and snapshots were collected and used to generate the POD basis functions. 

Then, simulations were conducted for 9
feed

θ = −  (symmetric periodic solutions, Figure 3) and for 

3
feed

θ = − (asymmetric quasi–periodic solutions, Figure 4).  
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Figure 3 −−−− Symmetric periodic regime at 9
feed

θ = − . Orbit projections (top) and time series (bottom). 

Comparison among “true” solution (at left), POD with 6 N = (center) and POD with 8N =  (right).  
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It is seen that the periodic solution (Fig. 3) is well captured, both qualitatively and quantitatively, by just 8 

basis functions, whereas qualitative agreement is achieved with as few as 6 basis functions. This even though the 

POD basis was constructed at a different value of the parameter ( 3
feed

θ = −  rather than –9). Only 30 ODE may 

thus be used in place of 150 for finite–difference ODE.  

Quasi–periodic solutions, being more complex, as expected require a larger number of basis functions: 

Figure 3 shows that 15 basis functions are barely sufficient to reproduce the Poincaré map of the system as 

computed with 150 finite–difference ODE. 
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Figure 4 – Symmetric aperiodic regime at 3
feed

θ = − . Poincaré maps (top) and time series (bottom). 

Comparison among “true” solution (at left), POD with 8N =  (center) and POD with 15N =  (right). 

 

From these preliminary results, POD/Galerkin prove to be a promising approach to develop reduced models of 

periodically forced reactors like RFR. The advantage in order reduction can be beneficial in real–time 

applications such as model predictive control. Future work will be devoted to applications of POD reduced 

models in the bifurcation analysis of RFRs. 
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